IQUI - Chemical Engineering
Credits
0
Credits
0
Credits
0
Credits
0
Credits
0
Credits
0
This course, Introduction to Chemical Engineering, seeks to teach first semester students how to identify, explain and put into practice basic concepts of Chemical Engineering and concepts common to all Engineering programs. Students must distinguish between Chemical Engineering and other Engineering branches. Students must develop basic skills in communication, teamwork and assessment. The course seeks to have students identify, interpret, fulfill and recognize their rights and responsibilities as students of the Universidad de los Andes. Students must identify services offered by the university and use them properly.
Credits
3
Instructor
Delgado Zambrano Luis
The course initiates with an overview of standard enterprise information systems for administrative support (General Ledger, Payroll, Inventory, Invoicing, etc.), as well as some typical business processes (order-to-cash, procurement-to-pay, etc.). Then, some important concepts are studied to acquire a good understanding of Enterprise’s Vision, Mission, Strategy, Value chain, Competitive forces, etc., which serve as framework to conceive and justify useful projects of Enterprise information systems. A practical project is developed with an ERP system. Finally, principles of change management are introduced, to deal with the deployment of Enterprise Information Systems.
Credits
0
Instructor
Gonzalez Barrios Andres
Credits
3
Credits
3
This course on Fundamentals of Industrial Processes, prepares students to formulate and resolve mass and energy balances in systems of chemical processes. This course is a complement to the course "Introduction to Chemical and Thermodynamics En- gineering". This course provides the fundamentals for other courses: Reaction Engineering, Unit Operations, Control and Process Design and Optimization. This course introduces an ap- proach to the kind of Engineering used to solve problems, by establishing relations between balance equations, unknown process variables and available relations. The student must direct all the information in order to find unknown variables and solve the process by properly using calculation procedures and/or available computational methods.
Credits
3
Instructor
Gonzalez Mauricio
This is a fundamental course of Engineering. The course intends to make students understand the laws of Thermodynamics applied to pure substances as well as to establish bonds between Thermodynamics, other chemical phenomena and all sciences that are part of Chemical Engineering fundamentals.
Credits
3
Instructor
Alvarez Solano Oscar
The course seeks to apply thermodynamic concepts and fundamentals of mathematics. This concepts and fundamentals are basic for describing a system that reaches phase equilibrium or chemical equilibrium. This knowledge is the base for future courses being able to integrate kinetic aspects and mass transfer in order to design separation units and chemical reactors.
Credits
3
Instructor
Gonzalez Mauricio
Practical complement of the thermodynamics course concepts.
Credits
0
Instructor
Alvarez Solano Oscar
Practical complement of the phase and chemical balance course concepts.
Credits
0
Instructor
Gonzalez Mauricio
Credits
0
Instructor
Hernandez Sierra Sebastian
This course provides students with opportunities to integrate knowledge, skills and basic attitudes in order to correctly complete a task, an action or an intellectual pro- cess according to their professional area. Students must act in a defined context of teamwork.
Credits
3
Instructor
Vargas Escobar Watson
Momentum transfer, heat and mass are phenomena ruling a lot of chemi- cal processes. They also save strong physics and mathematical analogies. From the basic sci- ences students will understand importance of the momentum transfer phenomenon and its applicability to Chemical Engineering.
Credits
3
Instructor
Davila Javier
This course introduces phenomena associated to mass and energy trans- fer in steady state systems. This course introduces and solves problems related to molecular transfer and convenction, heat and mass transfer.
Credits
3
Credits
0
The course will allow students to effectively suggest, execute and analyze experiments that provide significant conclusions to the lab, industry or organization in which they are executed, from a statistical standpoint, and within the actual context of engineering problems. This course covers the following topics: Population comparison (samples), unfactorial designl, pby blocks, latin, graeco-latin and factorial square, response surface analysis and correlation analysis.
Credits
3
Instructor
Sanchez Oscar
This course shows the importance of experimental design and experi- mental data analysis. The course provides the fundamentals and concepts of experimental designs such as: basic experimental design (uni variate and factorial), fundamentals of block- ing, error reduction and development of basic regression models.
Credits
3
The main course objective is to provide conceptual and mathematical tools that will allow students to become familiar with the reactive systems analysis and design. Students must be capable of applying chemistry, kinetics, thermodynamic and matter and energy balance in the design of reactors, identifying the different reactive systems, selecting a reactor for a specific application, evaluating velocity expressions and mathematically modeling the behavior of a reactive system.
Credits
3
Credits
0
Separation processes in mixtures are essential in chemical, petroleum, food, biochemistry and pharmaceutical industries. In this course students will use fundamen- tals of phase equilibrium, transport phenomena and Thermodynamics in order to distinguish separation processes using graphic and analytic methods. By using this knowledge, students will develop skills to select useful equipment for these processes.
Credits
3
Credits
0
The unit operations are each of the actions required in an industrial process to transform, adapt or transport materials. They can be considered as design proce- dures common to industrial processes, which are frequently applied in the field of chemical engineering.
Credits
3
Instructor
Mu?Oz Giraldo Felipe
The purpose of the chemical engineering laboratory is to help students understand the importance and role of a pilot plant as fundamental part of processes and products design. Likewise, the purpose is to reinforce student skills to suggest and administer projects, design experiments, work effectively as a team, conduct verbal and written presentations and integrate the theoretical knowledge of basic science and engineering into the resolution of actual problems. Pilot plant practice is conducted in the course, which involves distillation, drying, adsorption, reaction, solid-liquid extraction and evaporation processes, among others.
Credits
3
Instructor
Sierra Ramirez Rocio
Credits
0
This course, Process Plan Design, introduces students to techniques and methods related to process and product design. Students should recognize development elements in a process. Students should apply different courses learned in their Chemical En- gineering major. They must complement this knowledge by developing simulation work and process calculation. Students must establish solutions to specific problems.
Credits
3
Instructor
Mu?Oz Giraldo Felipe
Credits
0
The course objective is to provide students with the appropriate tools to model and simulate particular situations of chemical engineering, using a programming language or specific software. The course covers the following topics: differential equations (ordinary and partial) and borderline conditions, numeric methods, finite differences, solution convergence, error and time to calculate conventional differential equation solution methods.
Credits
3
Instructor
Davila Javier
This course introduces concepts of optimization, specifically process optimization with applications in the chemical industry. By the end of the course students will recognize application areas of numerical optimization. Students will be able to formulate and solve optimization problems, applying the main algorithms and some commercial tools in order to solve these kinds of problems.
Credits
3
Credits
0
Credits
0
The purpose of this course is to have students prepare a research project on a topic of interest applying scientific research methods. We expect that the project com- pleted during this course will help each student with graduation project. Students present this graduation project to meet basic requirements in order to obtain their chemical engi- neering degree.
Credits
0
This course develops and evaluates last-semester student abilities to confront a problem autonomously while using methods and procedures for solutions in En- gineering. It is expected that the students can integrate previously acquired competencies and knowl- edge in different areas of the learning process while developing their Graduation Project. ,English,-
Credits
3
Instructor
Hernandez Sierra Sebastian
The objective of this course is to generate in the student the skills necessary to design and build solutions in mobile devices, using a specific software development process. Students deal with heterogeneity in development and deployment. Here is understood by non-conventional, when there are restrictions in one or more of the following dimensions of execution environments: hardware, real time, storage, processing, power, weight, interfaces, visualization and communication.
Credits
3
Instructor
Fajardo Chisco Ruben
Credits
3
Credits
3
Chemical kinetics and reactor design constitute one of the key compo- nents for the synthesis of most chemicals. It is the knowledge of reaction engineering aspects what distinguishes chemical engineering from other engineering programs. The principles, methods and techniques learned in this class provide the student with basic elements and tools to solve a significant number of problems. Such applications cover a wide range of ar- eas including petrochemical, pharmaceutical, agrochemical, bio-processes, environmental remediation, microelectronics, nanotechnology and living systems, among others.
Credits
3
Credits
3
Credits
3
Description of the local and global environmental problems in industrial processes. Identification of regulatory framework to solve different environmental problems. Define scope, action framework and harmonization of various engineering disciplines in the resolution of environmental problems. Specification of product, its environmental destination, release and exposure. Process input and output. Assessment of potential emissions and impacts. Identification of opportunities to prevent contamination. Environmental performance in a flow diagram. Environmental cost evaluation in a production process.
Credits
3
This course is designed to promote reading and writing skills that allow students to properly face the intellectual challenges that they will find in their academic and professional lives. Firstly, the course encourages students to read articles, reports or books written for a specialized audience. Secondly, it stimulates students to make connections between various sources and compare different types of explanations. Thirdly, it exhorts students to construct academic arguments based on substantiated, independent and critical positions.
Credits
3
Instructor
Gonzalez Mauricio
Introduction to materials science, with emphasis on inspection and testing of the materials most commonly employed in civil engineering. In the class sessions, the course studies in detail the mechanical properties and the production processes (or treatment) of structural steel, hydraulic concrete, masonry, wood, and plastics. The course is accompanied by laboratory tests used in civil engineering and its relationship to the analysis of the material mechanical behavior. Topics being discussed include: cementitious materials, portland cement, concrete water content, aggregates in concrete, properties of fresh and hardened concrete, concrete mix design, ferrous materials, wood, and plastics.
Credits
3
Instructor
Chenet Julien
This course will expose the student through a realistic design project to the local reality of a region and to the role of civil engineering professional practice. The project consists in the resolution of a civil engineering-related problem that is characterized for being framed in a complex context. The course is based on the execution of a design project by stages, in which students work in teams to integrate and apply the acquired concepts in the fundamental and intermediate courses of the Civil Engineering Program.
Credits
3
Instructor
Chenet Julien
Credits
3
Credits
3
The course objective is to establish physical and mathematical bases used in rheology to understand the behavior of a fluid when subjected to an external force. Therefore, the course seeks to provide students an analysis tool to study complex fluids, such as a polymer, a suspension or an emulsion.
Credits
3
The objective of this course is to link the student to the real situation and regional problems through a design project; directed towards the resolution of a Environmental Engineering problem in an open, real and complex context. The course is based on the execution by stages of a project, in which the students will have to efficiently work in teams, to integrate and apply the acquired concepts in the fundamental and intermediate courses of the Environmental Engineering Program.
Credits
3
This course, Special Project, promotes students abilities to develop a Project within the framework of Chemical Engineering. Students will have a tutor who will assist them. In this special project, students will integrate and apply knowledge and competences from different experiences.
Credits
3
Instructor
Garnica Carlos
Credits
3
Credits
6
Credits
3
Credits
3
The purpose of this course is to provide a fundamental understanding of the principles that govern the principles of diffusive and convective transport in various systems of interest for Chemical Engineering. To such end, modern tools and methods of heat and mass problem analysis are presented. Analysis includes both qualitative analysis (the one that does not require solution of partial differential equations and its borderline conditions) and the analytic solution that applies various mathematical methods and techniques. These analyses are supplemented by the application of advanced computer tools that include specialized packages such as Matlab, COMSOL and ANSYS-CFX, which enable the computer solution of complex systems for which the analytical solution is difficult.
Credits
3
Credits
4
Geographic information management is essential in any project related to natural resources planning. Good management and planning of these phenomena or resources requires locating and monitoring them, allowing the arrangement or interpretation of their changes. This course intends to provide the theoretical and practical elements necessary to formulate appropriate solutions to the different problems that appear in environmental management. Using Geographic Information Systems, students will develop the ability to manage and analyze geographic information, simulate and model impacts that solve and help decision-making by the generation of spatial knowledge for environmental planning. It will allow the understanding of basic cartography concepts, remote perception and Global Positioning System –GPS-, allowing the development of spatial analysis abilities, through multicriteria and multiobjective assessment.
Credits
3
Instructor
Ortiz Pablo
Credits
4
This course presents different types of arranging an organization (enterprise, social group, formal or informal organization, that may be an IT provider or consumer organization) making emphasis on IT as fundamental element to articulate organization with its environment and to guide the organization to achieve its objectives.,English,-
Main organizational and IT concepts– organizational structure and culture, business processes and value chain, information and information technology, IT governance frameworks and business alignment – and their relationships are studied to lead and to achieve organization objectives
Credits
3
Credits
3
Instructor
Muñoz Giraldo Felipe
Credits
4
Credits
4
Credits
4
Credits
4
Credits
4
Credits
4
Credits
8
Instructor
Ortiz Pablo
Credits
1
Credits
1
Credits
0
Instructor
Ortiz Pablo
Credits
0
Credits
3
Instructor
Garnica Carlos