4000
The objective of this course is to introduce students to the experiment design theory and practice, the apparatuses used to measure the most important physical variables, the methodology used to measure such variables, the management of signals and the analysis of errors. The course contents include: Experimental design (basic statistics), probability distributions, hypothesis testing, median comparison, variance analysis and trust intervals), quality control applications. Manipulation, transmission and data recording (regressions, frequency analysis, filtering). Measuring systems (applications, set-up and description of measuring instruments, and instrument performance characteristics) Basic programming and algorithms. Practical projects.
Credits
4
Distribution
-
Vectorial n-dimensional spaces. Lineal operators, self-value theory, Jordan forms and application to ordinary equations. Differential vectorial operations: escalation and vectorial field gradients, divergence and rotational, total derivatives, vectorial operators in mechanics. Balance problems: discrete, continuous, orthogonal expansion solution, non-linear problems and linearization. Dynamic problems: symmetric and continuous problem solving, modal analysis, orthogonal expansion solution for diffusion problems, Fourier transform. Finite elements: variational problems on spaces with discrete functions.
Credits
4
Distribution
-
Credits
0
Distribution
-
Credits
4
Distribution
-
Credits
8
Distribution
-
Credits
4
Distribution
-
Credits
4
Distribution
-
Credits
0
Distribution
-
The student enrolled in this course is developing an international research experience.
Credits
0
Distribution
-