2000

FISI 2007 Metodos Matematicos

Los objetivos principales del curso son:
Introducir el cálculo de variable compleja para diferenciación e integración.
Estudiar las transformadas de Laplace y de Fourier, y aplicarlas en la solución de ecuaciones diferenciales.
Analizar diferentes funciones especiales, sus ecuaciones diferenciales respectivas, sus soluciones y aplicacio-
nes.
Estudiar las soluciones de diferentes ecuaciones diferenciales parciales en diferentes simetrías.

Al finalizar el curso, se espera que el estudiante esté en capacidad de:

Saber calcular ciertas integrales definidas usando métodos de variable compleja (método de residuos).
Aplicar el concepto de distribuciones, en particular la distribución de Dirac.
Saber calcular series de Fourier, transformadas de Fourier y de Laplace de funciones y distribuciones. Sa-
ber usar estas herramientas en problemas tales como resolución de ecuaciones diferenciales lineales o más
generalmente ecuaciones de convolución.
Saber resolver la ecuación de Laplace y la ecuación de Helmoltz en el espacio libre de fronteras, en problemas
con simetría esférica o simetría cilíndrica.
Saber calcular las funciones de Green correspondientes a estas ecuaciones. Estar familiarizado con las funcio-
nes especiales asociadas a estos problemas: funciones de Legendre, funciones esféricas armónicas, funciones
de Bessel.

Créditos

3

Distribución

-

FISI 2025 Física Computacional

Sistemas de ecuaciones lineales. Interpolación y extrapolación. Raíces. Integración. Derivación. Series. Funciones especiales. Números aLeañorios. Transformada de Fouriere. Integración de ecuaciones diferenciales. Valores y vectores propios. Problemas con valores en frontera.

Créditos

3

Instructor

Forero Romero Jaime

FISI 2026 Herramientas Computacionales en Ciencias

La ciencia a evolucionando de tal forma que el uso de los computadores es indispensable para hacer investigación. La cantidad de datos que se obtienen día a día necesitan de una capacidad computacional adecuada para manipularlos y deducir información de estos, que sería luego utilizada para realizar o comparar con modelos.

Al finalizar el curso, se espera que el estudiante esté en capacidad de:
Utilizar computadores con sistema operativo UNIX.
Presentar documentos usando el editor de textos Latex.
Manipular, analizar y visualizar datos.

Créditos

1

Distribución

-

FISI 2027 Lab. Métodos Computacionales (Especial)

Créditos

0

Distribución

-

FISI 2028 Métodos Computacionales en Ciencias

El curso tiene como objetivo principal desarrollar en los estudiantes una adecuada acti-
tud computacional, con la capacidad de discernir sobre los métodos adecuados para solucionar
cualquier problema y entender sus limitaciones.
En esta clase se dará enfasis a esa actitud computacional que corresponde al conjunto de habilidades
para trabajar con computadores en generar y procesar datos que correspondan a sistemas
físicos, donde estos datos corresponden a una medición o una simulación.

Créditos

3

Distribución

-

FISI 2029 Laboratorio de Métodos Computacionales

Créditos

1

Distribución

-

FISI 2040 Termodinamica

Los objetivos principales del curso son:
Comprender a cabalidad los conceptos de calor, temperatura y el significado físico de la Ley Cero, la Primera y Segunda Ley de la Termodinámica.
Estudiar los diferentes potenciales termodinámicos y sus relaciones.
Analizar fenómenos críticos y las transiciones de fase asociadas.

Al finalizar el curso, se espera que el estudiante esté en capacidad de:
Aplicar los conceptos de calor, temperatura y las leyes de la termodinámica en situaciones físicas prácticas.
Usar y comprender los diferentes potenciales termodinámicos y las relaciones entre ellos.
Comprender las condiciones de estabilidad termodinámica y sus aplicaciones.
Generar conocimiento a partir de la experimentación y el modelamiento computacional de los conceptos
vistos en clase.

Créditos

3

Distribución

-

FISI 2051 Laboratorio Intermedio

Se realizan varios experimentos entre los siguientes: Efecto Fotoeléctrico. Experimento de Millikan. Carga específica del electrón. Velocidad de la luz. Experimento de Franck-Hertz. Interferometría (Michelson, Fabry-Perot). Espectroscopía de rayos Gama. Resonancia del spin electrónico. Detección de rayos cósmicos. Rayos X. Experimento de Rutherford con rayos Alfa. Efecto Hall.

Créditos

3

Distribución

-

FISI 2101 Aceleradores de Particulas y sus Aplicaciones

Créditos

3

Distribución

-

FISI 2350 Fisica Atomica y Molecular

Radiación de cuerpo negro y la cuantización de la energía por Planck. El modelo de los cuantos de luz de Einstein. El modelo de Bohr del átomo de hidrógeno. Las reglas de cuantización de Bohr-Sommerfeld. Los postulados de de Broglie. La ecuación de Schrödinger. Pozos de potencial en 1D. Átomos hidrogenoides. El spin del electrón. El principio de exclusión de Pauli. La tabla periódica de los elementos. Enlaces moleculares covalentes y iónicos. La molécula de hidrógeno. Moléculas complejas. Espectros vibracionales, rotacionales y electrónicos de las moléculas.

Créditos

3

Distribución

-

FISI 2405 Mecanica

Revisión de la mecánica Newtoniana. Cinemática en coordenadas cilíndricas y esféricas. Fuerzas centrales. Sistemas no inerciales. Método Lagrangiano. Método Hamiltoniano. Mecánica de cuerpos rígidos: Transformaciones ortogonales, ángulos de Euler, tensor de inercia, ejes principales, movimiento libre del sólido rígido, trompo. Oscilaciones mecánicas. Colisiones. Relatividad especial. 4-vectores. Colisiones relativistas.

Créditos

3

Distribución

-

FISI 2430 Electromagnetismo

Ecuaciones de Maxwell. Electrostática y magnetostática con valores en la frontera. Energía en el campo electromagnético. Multipolos. Ondas electromagnéticas en medios conductores y dieléctricos. Reflexión, refracción y ecuaciones de Fresnel. Guías de ondas. Potenciales de Lienard-Wiechert y radiación electromagnética. Antenas. Interferencia, difracción y teoría de Kirchhoff. Formulación covariante de las ecuaciones de Maxwell.

Créditos

3

Instructor

Valencia Gonzalez Alejandra

FISI 2432 Electromagnetismo 1

Los objetivos principales del curso son:
Analizar las leyes de la electrostática y la magnetostática y aplicarlas en diferentes situaciones físicas usando
métodos matemáticos apropiados.
Estudiar el comportamiento electromagnético de la materia: dieléctricos, diamagnéticos, paramagnéticos y
ferromagnéticos.
Comprender las ecuaciones de Maxwell completas y analizar sus consecuencias dinámicas más importantes.

Al finalizar el curso, se espera que el estudiante esté en capacidad de:

Comprender los fenómenos básicos del electromagnetismo: fuerzas eléctricas y magnéticas, conducción, polarización, e inducción electromagnética.
Conocer las ecuaciones de Maxwell en el vacío y en medios lineales, y su aplicabilidad a distintas situaciones
físicas.
Calcular potenciales y campos eléctricos y magnéticos para ciertas distribuciones de carga con simetría
especial.
Aplicar las leyes del electromagnetismo a materiales dieléctricos, paramagnéticos y ferromagnéticos.
Generar conocimiento a partir del modelamiento teórico y computacional de los conceptos vistos en clase.

Créditos

3

Distribución

-

FISI 2450 Optica

Créditos

3

Distribución

-

FISI 2507 Mét. Matemáticos

Los objetivos principales del curso son:

  • Introducir el cálculo de variable compleja para diferenciación e integración.
  • Estudiar las transformadas de Laplace y de Fourier, y aplicarlas en la solución de ecuaciones diferenciales.
  • Analizar diferentes funciones especiales, sus ecuaciones diferenciales respectivas, sus soluciones y aplicaciones.
  • Estudiar las soluciones de diferentes ecuaciones diferenciales parciales en diferentes simetrías.

Al finalizar el curso, se espera que el estudiante esté en capacidad de:

  • Saber calcular ciertas integrales definidas usando métodos de variable compleja (método de residuos).
  • Aplicar el concepto de distribuciones, en particular la distribución de Dirac.
  • Saber calcular series de Fourier, transformadas de Fourier y de Laplace de funciones y distribuciones. Saber usar estas herramientas en problemas tales como resolución de ecuaciones diferenciales lineales o más generalmente ecuaciones de convolución.
  • Saber resolver la ecuación de Laplace y la ecuación de Helmoltz en el espacio libre de fronteras, en problemas con simetría esférica o simetría cilíndrica.
  • Saber calcular las funciones de Green correspondientes a estas ecuaciones. Estar familiarizado con las funciones especiales asociadas a estos problemas: funciones de Legendre, funciones esféricas armónicas, funciones de Bessel."

Créditos

3

Distribución

-

FISI 2526 Métod.Comput.1

Los métodos computacionales son un aspecto inseparable de cualquier área de trabajo en ciencia e ingeniería.

Esto se debe a la facilidad de acceso a computadoras programables y su aumento exponencial en capacidad de procesamiento. Estos recursos para el cómputo solo se pueden aprovechar si las personas interesadas son capaces de utilizarlos tecnología de manera reciente. De manera complementaria, la obtención y comprensión de los resultados obtenidos con estos métodos computacionales requieren una comprensión básica de probabilidad y estadística.

Créditos

3

Distribución

-

FISI 2528 Métod.Comput.2

Este curso abre una profundización de los temas desarrollados en el curso Métodos computacionales 1, su objetivo es resolver numéricamente problemas que involucren sistemas descritos por ecuaciones diferenciales

Créditos

2

Distribución

-

FISI 2540 Termodinámica

Los objetivos principales del curso son:

  • Comprender a cabalidad los conceptos de calor, temperatura y el significado físico de la Ley Cero, la Primera y Segunda Ley de la Termodinámica.
  • Estudiar los diferentes potenciales termodinámicos y sus relaciones.
  • Analizar fenómenos críticos y las transiciones de fase asociadas.

Al finalizar el curso, se espera que el estudiante esté en capacidad de:

  • Aplicar los conceptos de calor, temperatura y las leyes de la termodinámica en situaciones físicas prácticas.
  • Usar y comprender los diferentes potenciales termodinámicos y las relaciones entre ellos.
  • Comprender las condiciones de estabilidad termodinámica y sus aplicaciones.
  • Generar conocimiento a partir de la experimentación y el modelamiento computacional de los conceptos vistos en clase.

Créditos

3

Distribución

-

FISI 2551 Lab. Intermedio

En este curso se realizan varios experimentos entre los siguientes: Efecto Fotoeléctrico. Experimento de Millikan. Carga específica del electrón. Velocidad de la luz. Experimento de Franck-Hertz. Interferometría (Michelson, Fabry-Perot). Espectroscopía de rayos Gama. Resonancia del spin electrónico. Detección de rayos cósmicos. Rayos X. Experimento de Rutherford con rayos Alfa. Efecto Hall.

Créditos

3

Distribución

-

FISI 2560 Electrónica para ciencias

En este curso se estudian: Circuitos Lineales. Teoremas de Thevenin y Northon. Análisis de circuitos en el dominio de la frecuencia. Diodos. Transistores. Amplificadores Operacionales. Principios de lógica y sistemas digitales. FT y FFT.

Créditos

3

Distribución

-

FISI 2605 Mecánica

En este curso se consideran los siguientes contenidos:Revisión de la mecánica Newtoniana. Cinemática en coordenadas cilíndricas y esféricas. Fuerzas centrales. Sistemas no inerciales. Método Lagrangiano. Método Hamiltoniano. Mecánica de cuerpos rígidos: Transformaciones ortogonales, ángulos de Euler, tensor de inercia, ejes principales, movimiento libre del sólido rígido, trompo. Oscilaciones mecánicas. Colisiones. Relatividad especial. 4-vectores. Colisiones relativistas.

Créditos

3

Distribución

-

FISI 2632 Electromag. 1

Los objetivos principales del curso son:

  • Analizar las leyes de la electrostática y la magnetostática y aplicarlas en diferentes situaciones físicas usando métodos matemáticos apropiados.
  • Estudiar el comportamiento electromagnético de la materia: dieléctricos, diamagnéticos, paramagnéticos y ferromagnéticos.
  • Comprender las ecuaciones de Maxwell completas y analizar sus consecuencias dinámicas más importantes.

Al finalizar el curso, se espera que el estudiante esté en capacidad de:

  • Comprender los fenómenos básicos del electromagnetismo: fuerzas eléctricas y magnéticas, conducción, polarización, e inducción electromagnética.
  • Conocer las ecuaciones de Maxwell en el vacío y en medios lineales, y su aplicabilidad a distintas situaciones físicas.
  • Calcular potenciales y campos eléctricos y magnéticos para ciertas distribuciones de carga con simetría especial.
  • Aplicar las leyes del electromagnetismo a materiales dieléctricos, paramagnéticos y ferromagnéticos.
  • Generar conocimiento a partir del modelamiento teórico y computacional de los conceptos vistos en clase."

Créditos

3

Distribución

-

FISI 2810 Nanomateriales

Créditos

3

Distribución

-

FISI 2930 Astronomía General

Créditos

3

Distribución

-

FISI 2940 Astrofísica Extragaláctica

Créditos

3

Distribución

-

FISI 2992 Astrofisica Estelar

Créditos

4

Distribución

-