IMEC 4221 Wind Turbine Aerodynamics and Aeroelasticity
This course focuses on the analysis and computational modeling of the aerodynamics and aeroelasticity of wind turbines and includes a blend of aerodynamic/structural analysis theory and computational methods used for the design of state‐of‐the‐art wind turbines.
The main objective of this course is to present an introduction to the subject of wind turbine aerodynamics and aeroelasticity at a level suitable for academics, senior undergraduate and graduate students, and practitioners in mechanical, civil, and aerospace engineering, design, researchers in the field and teaching staff. Emphasis will be placed on the different levels of abstraction and sophistication in aerodynamic/aeroelastic models for wind turbines as well as the critical evaluation of each model’s predictive capabilities.
The course will provide the students with an introduction to aeroelastic principles and how to couple various structural and aerodynamic models in an aeroelastic setup. The course participants will be able to calculate the aeroelastic response of a wind turbine construction on time varying loads originating from atmospheric turbulence, wind gusts, wind shear, yaw, tower shadow as well as gravity and inertial loads.
Finally, the student has to make use of custom software to apply aeroelasticity in project analysis and design. Modelling will be carried out using MATLAB.
Idioma en el que se ofrece el curso
Español
Página del catálogo en este curso