MATE3182 La Paradoja de Banach-Tarski

La “Paradoja de Banach-Tarski” dice que uno puede partir la esfera unitaria en R^3 en cuatro subconjuntos, que después de usar movimientos rígidos en el espacio euclídeo se reacomodan para formar dos esferas idénticas a la original. Este resultado es en sí mismo sorprendente, pero al resolver preguntas naturales como ¿Por qué no se puede hacer en el plano? y qué hay detrás de la paradoja, llevaron al descubrimiento y relación de conceptos importantes en teoría de grupos como “amenability”, propiedad T de Kazshdan, y aplicaciones muy interesantes de matemáticos como Gromov, Margullis y Tits. En este curso analizamos la “paradoja” y los elementos de su demostración, cómo nos conlleva a la noción de grupos “amenable”, la ausencia de la paradoja en dimensiones menores y consecuencias de “amenable” sobre condiciones de crecimiento y la propiedad T de Kazhdan.

Créditos

3

Periodo en el que se ofrece el curso

201610

Idioma en el que se ofrece el curso

Español