4000
Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.
Créditos
4
Distribución
-
Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.
Créditos
4
Distribución
-
Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.
Créditos
4
Distribución
-
Este curso de verano cubre técnicas de programación funcional, utilizando Haskell como vehículo para entender la relación entre programación funcional y matemáticas constructivas y algunos de los recientes avances en teoría y aplicaciones.
Créditos
4
Este curso es una introducción a las herramientas matemáticas fundamentales para el modelamiento. Se busca familiarizar a los estudiantes, que vienen de una carrera en la que se usa poco la matemática, con conceptos de los cursos del ciclo de matemáticas de las ingenierías que se usan en modelos determinísticos.
Créditos
4
Distribución
-
El contenido del curso incluye los siguientes temas: Anillos e Ideales. Módulos. Anillos y módulos de fracciones. Descomposición primaria. Dependencia entera y Valoraciones. Condiciones de cadena. Anillos noetherianos. Anillos de Artin. Anillos de valoración discreta y dominios de Dedekind. Completaciones. Teoría de la dimensión y si queda tiempo, otros temas que el instructor considere apropiados.
Créditos
4
Distribución
-
Créditos
4
Distribución
-
El contenido del curso incluye los siguientes temas, que son expuestos esencialmente en el orden descrito:
1) Teoría de grupos: subgrupos y grupos cociente, acciones de grupos en conjunto y teoremas de Sylow. El teorema de estructura de grupos abelianos finitamente generados. Ejemplos centrales: grupos cíclicos, alternantes, simétricos y dihedrales. Los tres teoremas de isomorfismo de Noether.
2) Álgebra lineal: espacios vectoriales, aplicaciones lineales, determinantes, diagonalización, forma de Jordan.
3) Anillos: ideales (a izquierda y a derecha), anillos cociente, tres teoremas del isomorfismo de Noether. Ejemplos centrales: anillos polinomiales en una o varias variables, matrices, DIPs.
4) Campos: extensiones de campos, extensiones algebraicas, extensiones trascendentes, clausura algebraica, explicación del porqué el álgebra lineal funciona mejor sobre campos algebraícamente cerrados y explicación de cómo pasar a uno de ellos. Ejemplos centrlaes: Q, R, C y el campo de q elementos.
5) Módulos: submódulos, módulos cociente(caso especial: espacio vectorial dual y espacio vectorial cociente). Tres teoremas de isomorfismo de Noether. Teoremas de estructura para módulos sobre DIPs (corolario: forma canónica de Jordan y teorema de estructura para grupos abelianos). Ejemplos centrales: módulos sobre los anillos explicados anteriormente.
Créditos
4
Es un curso sobre los determinantes y como se les entiende esquemáticamente en el contexto de fenómenos planar y non-crossing. También vamos introducir y estudiar los clúster álgebras - un concepto que se desarrolló, en parte, para ayudar a analizar las identidades algebraicas y unas fórmulas para las expansiones determinantales (y expansiones de los objetos que se comportan como los determinantes).
Créditos
4
Distribución
-
En éste curso pretendemos presentar una introducción a los temas más importantes de la Lógica Matemática como son: el teoremas de completitud para la lógica de primer orden y el teorema de incompletitud de Gödel de la aritmética formal. El segundo tema que abordaremos será la teoría axiomática de conjuntos de Zermelo – Frenkel con el axioma de escogencia, ordinales, cardinales y aritmética cardinal. Finalmente haremos una introducción a la teoría de modelos.
Créditos
4
Distribución
-
Una estructura o-minimal es un conjunto linealmente ordenado dotado con estructura adicional (por ejemplo, de un anillo o campo, o con aún más operaciones) tal que todos sus subconjuntos definibles son uniones finitas de puntos y intervalos. Aquí “definible” quiere decir en el lenguaje de la lógica del primer orden, que tiene símbolos para la igualdad, las operaciones booleanas, y cuantificadores (“para todo” y “existe algún”). Resulta que el campo de los números reales es o-mimal, y que sigue siéndolo aún si agregamos algunas operaciones tales como la exponenciación. En cierto sentido, la estudia de estructuras o-minimales es una generalización de la geometría sobre los reales.
Las “variedades” o subconjuntos definibles de R^n en una estructura o-minimal (R, <, …) poseen una bonita teoría de dimensión y son dóciles en un sentido topológico. Por ejemplo, se puede descomponerlos en un número finito de células (gráficas y regiones entre gráficas de funciones continuas) y tienen triangulaciones. Durante las últimas décadas el concepto de o-minimalidad ha tenido aplicaciones fascinantes a la geometría algebraica, como la demostración de Jonathan Pila de la conjetura de André-Oort para productos de curvas modulares.
Créditos
4
Este curso tiene dos objetivos principales. Uno es introducir la técnica del forcing para producir pruebas de consistencia relativa con los axiomas de la teoría de conjuntos; en particular se demostrará que la Hipótesis del Continuo es independiente de ZFC. El otro objetivo es estudiar algunas aplicaciones de la teoría de conjuntos a otras ramas de la matemática, en especial la topología y el análisis.
Créditos
4
Distribución
-
El objetivo de este curso es servir de puente entre un curso básico de Topología General (e.g. MATE3420) y temas recientes de investigación en el área. Algunos de los temas que trataremos son: Representación de Tychonov y compactificación de Stone- Čech. Álgebras booleanas y ultrafiltros. Dualidad de Stone. El álgebra P(ω)/Fin y el espacio βω. Álgebras libres y los espacios de Cantor 2k. Invariantes cardinales: productos y subespacios. Agregando estructura: Grupos, semigrupos y espacios diagonalizables. Unicidad de grupos compactos cero-dimensionales. Todo grupo compacto es diádico. Dualidad de Pontryagin.
En la segunda parte del curso veremos algunos temas más avanzados, según el interés de los participantes. Estos podrían incluir: Metrizabilidad y espacios de Moore. Teorema de extensión de homotopías y espacios de Dowker. Topología de “subespacios elementales". Teoría de L-espacios y S-espacios.
Créditos
4
Distribución
-
Iniciar el estudio de la Teoría de Modelos de la Lógica de Primer Orden. Completud, Compacidad, Teoremas de Lowenheim-Skolem. Teorías K.Categóricas, Teorías Completas, Teoría Decidibles e Indecidibles. Equivalencia y Sumersión Elemental. Caracterización de Teorías Universales, Universales-Existenciales. Modelos Existencialmente Cerrados, Teorías Modelo Completas, Eliminación de Cuantificadores. Isomorfismos Parciales, Teoremas de Feferman-Vaugth. Teoremas de Interpolación y Definibilidad. Automorfismos, Indiscernibles, Teorema de Ehrenfeucht-Mostowski. Modelos Genéricos de Fraissé. Algebras Booleanas, Filtros, Ultrafiltros. Ultraproductos, Saturación de Ultraproductos. Tipos de Elementos, Realización y Omisión de Tipos, Saturación, Homogeneidad, Universalidad. Modelos Atómicos y Primos, Teorías Omega-Categóricas. Espacios de Tipos, Estabilidad, TeoríasOmega Estables. Después de esto el instructor podrá profundizar más en temas como las siguientes. Leyes 0-1 en Modelos Finitos. Espectro de Modelos Finitos. Relaciones con Complejidad. Teorema de Keisler-Shelah, Caracterización de Clases Elementales. Teorema de Categoricidad de Morely. Teorema de Baldwin-Lachlan.
Créditos
4
Distribución
-
En éste curso estudiaremos teorías estables y simples (una forma de generalizar las anteriores) y algunos rangos asociadas a éstas como son el rango de Morley y el rango local. Se estudiarán nociones asociadas a éstas, como son divisibilidad y bifurcación de fórmulas y tipos. Mostraremos que la definibilidad de tipos caracteriza las teorías estables y que una apropiada noción de independencia caracteriza a las teorías simples. Se estudiarán nociones combinatorias asociadas a estas teorías como son la propiedad de independencia, la propiedad del orden y la propiedad del orden fuerte. Introduciremos las teorías NIP, las teorías que NO satisfacen la propiedad de independencia, otra forma de generalizar las teorías estables.
Créditos
4
Distribución
-
La teoría de modelos es una rama de la lógica matemática que tiene muchas aplicaciones al álgebra.
En este curso estudiaremos algunas de estas aplicaciones, principalmente en los cuerpos finitos y pseudofinitos. Nos enfocaremos en las principales propiedades modelo teóricas de estos cuerpos y analizaremos la relación que hay entre estas y ciertas características algebraicas.
Créditos
4
Distribución
-
Créditos
4
Distribución
-
El curso teoría de representaciones de grupos finitos está dirigido principalmente a estudiantes de matemáticas y física con conocimientos básicos de teoría de grupos y álgebra lineal. La idea es dar una introducción a varios temas de álgebra y teoría de representaciones que se pueden desarrollar de manera elemental y aparecen en muchas áreas de las matemáticas y de la física.
i.) Representaciones: Definiciones. Ejemplos básicos. Subrepresentaciones. Representaciones irreducibles. Productos tensoriales de dos representaciones. Cuadrado simétrico y alternante. ii.) Teoría de caracteres: El carácter de una representación. El lema de Schur. Relaciones de ortogonalidad entre caracteres. Descomposición de la representación regular. Número de representaciones irreducibles. Descomposición canónica de una representación. Descomposición explícita de una representación. iii.) Subgrupos, productos y representaciones inducidas: Subgrupos abelianos. Producto de dos grupos. Representaciones inducidas. iv.) Ejemplos y generalizaciones: Grupos cíclicos. Grupos diedrales. Grupos simétricos y alternantes. Representaciones de grupos compactos. v.) El álgebra de grupo: Representaciones y módulos Descomposición de C[G]. El centro de C[G]. Propiedades de integralidad de los caracteres.
Créditos
4
Distribución
-
Este curso es una introducción a los aspectos computacionales y aplicados de la geometría algebraica. Estudiaremos la teoría de variedades afines y proyectivas y además la teoría de bases de Groebner. Obtendremos una idea de cómo funcionan los sistemas de álgebra computacional para procesar los cálculos del álgebra de polinomios.
Créditos
4
El propósito del curso es hacer una introducción a los métodos algorítmicos en geometría algebraica (bases de Grobner, series de Hilbert, etc.) en el contexto de anillos con acciones de grupos finitos o más generalmente reductivos (polinomios simétricos). Nos enfocaremos en el cálculo algorítmico de anillos de invariantes. Estas técnicas son de interés tanto en matemáticas puras como aplicadas.
Créditos
4
Distribución
-
El objetivo de la clase es exponer las propiedades aritméticas básicas de la curvas elípticas. La geometría diofantina trata del estudio de las soluciones en los enteros o en los racionales de ecuaciones algebraicas. Las ecuaciones lineales no poseen mayor dificultad ; las cuadráticas, de mayor interés, fueron estudiadas ampliamente a principios del siglo XX. El siguiente caso más simple, es el estudio de las cúbicas en dos variables : las curvas elípticas. Son tan complejas que hoy en día sigue siendo un tema de investigación muy dinámico.
En la primera parte del curso, definiremos la curvas elípticas y las estudiaremos sobre
un campo de base cualquiera. Se explicará, entre otras cosas, la operación que hace de sus puntos un grupo abeliano. Luego podremos abarcar temas más avanzados, según el tiempo y el interés de los estudiantes: sobre campos finitos, demostrando el teorema de Hasse-Weil; sobre el campo de los complejos, demostrando el teorema de uniformización; sobre campos de números, demostrando el teorema de Mordell-Weil.
Créditos
4
Este curso está dirigido a estudiantes de matemáticas y estudiantes de otras ciencias que quieran usar la teoría de grupos en su carrera. Profundizaremos y extenderemos las ideas y construcciones que aparecen en el curso Álgebra Abstracta I para estudiar grupos de permutaciones y sus aplicaciones en la combinatoria y en la teoría de representaciones. Construcciones y estructura del grupo de permutaciones S_n y sus subgrupos, órbitas y estabilizadores, transitividad y k-transitividad, productos semidirectos y productos de corona, grupos primitivos y imprimitivos, permutaciones de conjuntos infinitos, y representaciones y caracteres de S_n.
Créditos
4
La primera parte de la clase se concentra en el estudio de anillos y módulos sobre anillos con énfasis en los anillos de polinomios. La segunda parte se concentra en campos y teoría de Galois. Mostramos como algunas preguntas clásicas sobre la solvabilidad de polinomios y construcciones con regla y compás se traduce a problemas de extensiones de cuerpos y probamos la insolubilidad de la quíntica. Probamos la correspondencia de Galois y calculamos el grupo de Galois de un polinomio de cuarto grado. Estudiamos campos finitos, extensiones algebraicas y trascendentes y clasificamos campos algebraicamente cerrados.
Créditos
4
Distribución
-
Este será un curso introductorio en Geometría algebraica. En este curso estudiaremos variedades algebraicas, variedades proyectivas, y funciones entre ellas. Se establecerá un diccionario entre la geometría y el álgebra. Aprenderemos toda el álgebra conmutativa necesaria para poder desarrollar la geometría.
Créditos
4
Distribución
-
La “Paradoja de Banach-Tarski” dice que uno puede partir la esfera unitaria en R^3 en cuatro subconjuntos, que después de usar movimientos rígidos en el espacio euclídeo se reacomodan para formar dos esferas idénticas a la original. Este resultado es en sí mismo sorprendente, pero al resolver preguntas naturales como ¿Por qué no se puede hacer en el plano? y qué hay detrás de la paradoja, llevaron al descubrimiento y relación de conceptos importantes en teoría de grupos como “amenability”, propiedad T de Kazshdan, y aplicaciones muy interesantes de matemáticos como Gromov, Margullis y Tits. En este curso analizamos la “paradoja” y los elementos de su demostración, cómo nos conlleva a la noción de grupos “amenable”, la ausencia de la paradoja en dimensiones menores y consecuencias de “amenable” sobre condiciones de crecimiento y la propiedad T de Kazhdan.
Créditos
4
Distribución
-
Créditos
4
Distribución
-
Créditos
4
Distribución
-
1. Análisis Real
Espacios métricos, completitud, completacion de un espacio métrico, compacidad, conexidad.
2. Introducción al Análisis Funcional
Introducción a la medida de Lebesgue, Teorema de la convergencia Monotona,Teorema de la Convergencia Dominada, Lema de Fatou; Espacios Lp. Espacios Ck [a; b], Teorema de Arzela-Ascoli, Teorema de Stone-Weierstrass.
3. Análisis Complejo
Funciones holomorfas, Ecuaciones de Cauchy-Riemann, Teorema de Cauchy y Analiticidad, Calculo de Residuos, Teorema Fundamental del Álgebra.
Créditos
4
El análisis complejo es la teoría de funciones analíticas en el plano complejo. Es una teoría muy clásica que comenzó con los trabajos de Cauchy, Riemann y Weierstrass. Desde sus comienzos los resultados se usan cotidianamente en muchos áreas de matemáticas. En contraste a la materia “Variable compleja”, en este curso se tratan los temas básicas de la teoría del análisis complejo rigurosamente.
Créditos
4
Distribución
-
El curso da una introducción a la teoría de la medida de Lebesgue y sus aplicaciones al análisis funcional y a la probabilidad.
INTEGRACIÓN ABSTRACTA: El concepto de medibilidad. Propiedades elementales de las medidas. Integración de funciones positivas. Integración de funciones complejas. Conjuntos de medida cero. MEDIDAS DE BOREL POSITIVAS: El Teorema de Representación de Riesz . Regularidad de las medidas de Borel. La medida de Lebesgue. Propiedades de continuidad de las funciones medibles. MEDIDAS COMPLEJAS: Variación total. Continuidad absoluta. El teorema de Radon–Nikodym. INTEGRACIÓN SOBRE ESPACIOS PRODUCTO: Medibilidad de productos cartesianos. El teorema de Fubini. Completación de medidas producto. Convoluciones. Funciones de distribución. DIFERENCIACIÓN: Derivada de medidas. El Teorema Fundamental del Cálculo. Transformaciones diferenciables. ESPACIOS LP: Funciones convexas y desigualdades. Espacios Lp. Aproximación por funciones continuas.
Créditos
3
Distribución
-
El curso tiene como propósito la presentación teórica de las ecuaciones básicas da la Física Matemática tales como las ecuaciones de Laplace y Poisson, las ecuaciones de transmisión de calor y de onda, los sistemas de ecuaciones en derivadas parciales de tipo Navier-Stokes y similares. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. El curso tiene un énfasis teórico y es orientado principalmente a los estudiantes de las carreras Matemática y Física, aunque también puede ser útil para los estudiantes de Ingeniería que están interesados en una avanzada base teórica.
Créditos
4
Este curso tiene como propósito la presentación teórica de los aspectos fundamentales de la teoría de las Funciones Generalizadas. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. El curso tiene un énfasis teórico y es orientado principalmente a los estudiantes de la carrera Matemática, aunque también puede ser útil para los estudiantes de Física.
La teoría de las funciones generalizadas (FG) es una parte importante del Análisis que extiende el concepto de una función a los funcionales lineales continuos actuando sobre un espacio determinado de funciones básicas.
Créditos
4
Distribución
-
Espacios de Banach: Definiciones y ejemplos. Subespacios, transformaciones lineales, espacios cocientes. Dualidad: el teorema de Hahn-Banach. Teoremas de Banach-Steinhaus, de la Aplicación Abierta y del Gráfico Cerrado. Aplicaciones: Operadores adjuntos. Espacios de Hilbert: Definiciones y ejemplos, ortogonalidad. Operadores continuos: convergencia de operadores. Operadores hermitianos, normales y unitarios. Proyecciones ortogonales. Operadores compactos: Introducción a la teoría espectral.
Créditos
3
Distribución
-
Este curso tiene como propósito la presentación teórica de los aspectos fundamentales de la teoría espectral de los operadores lineales. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. 1.Criterios de compacidad en varios espacios funcionales 2. Operadores compactos auto-adjuntos en los espacios de Hilbert, su semejanza con las matrices simétricas. 3. Operadores compactos en los espacios de Hilbert, Teoremas de Fredholm para las ecuaciones funcionales, sus aplicaciones para las ecuaciones integrales con núcleos no-singulares. 4. Representación integral de los operadores auto-adjuntos y de las funciones de esos operadores, como descomposición en la medida espectral.. 5. El espectro y el espectro esencial de los operadores auto-adjuntos. 6. Representación integral explícita del laplaciano actuando en el espacio de Sobolev, forma explícita de los proyectores sobre los subespacios invariantes del laplaciano. 7. Clasificación del espectro del laplaciano (puntual, continuo, esencial, residual) actuando en los espacios de Sobolev , como función de p. 8. Algunas aplicaciones de la teoría espectral a los problemas de unicidad de la hidrodinámica matemática.
Créditos
4
Distribución
-
Créditos
4
Distribución
-
Créditos
4
Distribución
-
Análisis Asintótico desarrolla más adelante el método de series de potencia ya conocido, por ejemplo de ecuaciones diferenciales. En el presente curso, el concepto de series asintóticas divergentes se introduce rigurosamente, y también se discute el origen principal de tales series – la integral de Laplace. Varias aplicaciones a los problemas de física matemática (funciones especiales, la teoría de funciones generalizadas) se estudian.
Créditos
4
Distribución
-
La geometría Riemanniana ha sido una de las áreas más importantes de las matematicas desde su inicio, en el siglo XIX, y sus aplicaciones en física teórica (en relatividad general, en particular) revolucionaron nuestra concepción del mundo. El curso que se presenta a continuación tiene como objetivo introducir las ideas fundamentales y las herramientas básicas de la geometría Riemanniana, presentando al mismo tiempo los resultados más importantes en el área y algunas de sus aplicaciones (clásicas y recientes) en el estudio de la topología de variedades diferenciales.
Créditos
4
Distribución
-
La geometría Riemanniana ha sido una de las áreas más importantes de las matematicas desde su inicio, en el siglo XIX, y sus aplicaciones en física teórica (en relatividad general, en particular) revolucionaron nuestra concepción del mundo. El curso que se presenta a continuación tiene como objetivo introducir las ideas fundamentales y las herramientas básicas de la geometría Riemanniana, presentando al mismo tiempo los resultados más importantes en el área y algunas de sus aplicaciones (clásicas y recientes) en el estudio de la topología de variedades diferenciales.
Créditos
4
En este curso, se usarán las formas diferenciales como una herramienta para el estudio de algunos aspectos centrales de la Topología Algebraica tales como Teorías Cohomológicas, Dualidad de Poincaré, el isomorfismo de Thom, etc. Nos limitaremos a la categoría de las variedades diferenciables, principalmente. Las técnicas usadas son útiles para entender algunos de los aspectos más importantes de la Topología Algebraica, como sucesiones espectrales, clases características, geometría compleja, etc.
Créditos
4
Distribución
-
Profundizar en las aplicaciones de las Teorías de Homología, Cohomología y Clases Características. Evidenciar la relación de estas teorías con la Geometría. Teoría de Transversalidad en Superficies Compactas. Topología de Variedades de Baja Dimensión. Clases Características de Chern y de Pontrjagyn. Breve introducción a la Geometría Compleja y Compleja Generalizada. Obstrucciones para la Existencia de Estructuras Complejas Generalizadas.
Créditos
4
Distribución
-
El objetivo de este curso es introducir la teoría básica de grupos de Lie, álgebras de Lie y los fundamentos de la teoría de representaciones asociada, con el objeto de estudiar la geometría de espacios homogéneos, i.e. espacios que son cocientes de grupos de Lie por subgrupos cerrados.
Créditos
4
Distribución
-
Los haces vectoriales y en forma más general los haces fibrados juegan un papel importante en las matemáticas y la física matemática. La noción de haz vectorial surge al estudiar las variedades diferenciables y alrededor de la mitad del siglo pasado se desarrolló la teoría de clases características para su estudio. El curso abordará las construcciones de haces fibrados, haces vectoriales, sus propiedades topológicas y aplicaciones.
Créditos
4
Distribución
-
Créditos
4
Distribución
-
Este curso es una introducción a las teorías de la dinámica estocástica, es decir las herramientas y resultados para entender el comportamiento de procesos estocásticos a lo largo del tiempo en diferentes contextos, como familias i.i.d. de variables aleatorias independientes, cadenas de Markov, sistemas dinámicos aleatórios, procesos estacionarios, y ecuaciones diferenciales estocásticas simples.
Créditos
4
Distribución
-
Introducir al estudiante a las principales ideas y técnicas de la Estadística No Paramétrica, de manera de que pueda manejar tanto los aspectos teóricos del tema como los aspectos computacionales y sea capaz de seleccionar procedimientos no paramétricos adecuados para diversos problemas de la estadística e implementarlos eficientemente en la computadora, incluso en situaciones no estándar. Asimismo, exponer al estudiante a las diversas técnicas de remuestreo disponibles en la estadística moderna, haciéndolo consciente de las posibilidades y limitaciones de este tipo de procedimiento. El curso requiere un curso previo en Estadística y cierta madurez matemática, para manejar ideas tales como el Teorema del Límite Central para U-Estadísticos, por ejemplo.
Créditos
4
Distribución
-
Créditos
4
Distribución
-
Introducir al estudiante al movimiento Browniano y algunas de sus propiedades. Presentarle la teoría básica de integración estocástica con respecto al movimiento Browniano y su relación con las ecuaciones diferenciales estocásticas de difusión. Darle la posibilidad al estudiante de aplicar estos conceptos en el contexto de las aplicaciones en finanzas.
Créditos
4
Distribución
-
Este curso es una introducción a la teoría de procesos estocásticos en tiempo continuo con énfasis en el papel central que juega el movimiento Browniano y sus generalizaciones naturales, los procesos de Lévy. Se presentarán algunas aplicaciones en biología y física.
Créditos
4
Distribución
-
El propósito de este curso es estudiar dos aspectos importantes de la optimización convexa:
1. Métodos numéricos (demostrar que el problema de aproximar la solución a un problema de optimización convexa con precisión muy alta es de complejidad POLINOMIAL) y discutir algunas implementaciones eficientes.
2. El rol de la optimización convexa en la aproximación de problemas combinatorios (el algoritmo de Goemans-Williamson y las jerarquías de aproximación de Lasserre y Parrilo para problemas de momentos).
Se discutirán además muchas aplicaciones de la optimización convexa que resultan de estos dos aspectos.
Créditos
4
El curso se enfoca en presentar la teoría necesaria para modelar y resolver problemas de optimización convexa, buscando siempre incluir ejemplos en el análisis de datos, donde estos problemas surgen.
Créditos
4
Distribución
-
Créditos
4
Distribución
-
El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión.
Créditos
2
Distribución
-
El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión. En éste seminario el estudiante decidirá el tema en el área en que piensa desarrollar su trabajo de grado y preparará con el profesor que posiblemente será su director de trabajo de grado una exposición sobre el tema escogido.
Créditos
2
Distribución
-
Su objetivo es introducir plenamente al estudiante en la actividad investigativa, por medio del estudio directo de la literatura matemática especializada y capacitarlo, no solo para la solución de problemas, sino para su adecuada formulación. El estudiante debe presentar el proyecto de tesis al Comité de Postgrado e Investigaciones del Departamento antes de la última semana de retiros del semestre, se espera que el estudiante avance en su investigación en el periodo posterior.
Créditos
3
Distribución
-
El estudiante deberá elaborar un trabajo de investigación en alguna de las áreas matemáticas que el Programa de Magíster ofrece. Éste debe demostrar que el autor ha realizado un trabajo de asimilación y sistematización, o una exploración cuidadosa en la frontera de un tema concreto, evidenciando cierto grado de creatividad y una gran familiaridad con la información reciente sobre el tema. El Trabajo de Grado debe estar redactado en castellano o inglés y poseer la organización formal propia de un trabajo científico.
Créditos
12
Distribución
-
Este curso lo deben inscribir los estudiantes de posgrado que planean recibir su grado el semestre siguiente.
Créditos
0
Distribución
-
Materia que inscriben los estudiantes de posgrado cuando hacen intercambios académicos con Universidades de otros países.
Créditos
0