4000

MATE 4001 Curso Tutorial de Postgrado

Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.

Créditos

4

MATE 4002 Curso Tutorial Postgrado 2

Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.

Créditos

4

MATE 4003 Curso Tutorial Postgrado 3

Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.

Créditos

4

MATE 4004 Curso Tutorial Postgrado 4

Se trata de estudiar, un tema avanzado en el área de especialización del estudiante. Las sesiones serán coordinadas por el profesor y el estudiante participa activamente en éste.

Créditos

4

MATE 4070 Curso Nivelatorio para el Posgrado de Ingeniería Bio-Médica

Este curso es una introducción a las herramientas matemáticas fundamentales para el modelamiento. Se busca familiarizar a los estudiantes, que vienen de una carrera en la que se usa poco la matemática, con conceptos de los cursos del ciclo de matemáticas de las ingenierías que se usan en modelos determinísticos.


Créditos

4

MATE 4101 Algebra Conmutativa

El contenido del curso incluye los siguientes temas: Anillos e Ideales. Módulos. Anillos y módulos de fracciones. Descomposición primaria. Dependencia entera y Valoraciones. Condiciones de cadena. Anillos noetherianos. Anillos de Artin. Anillos de valoración discreta y dominios de Dedekind. Completaciones. Teoría de la dimensión y si queda tiempo, otros temas que el instructor considere apropiados.

Créditos

4

MATE 4106 Algebra para Postgrado

El contenido del curso incluye los siguientes temas, que son expuestos esencialmente en el orden descrito:
1) Teoría de grupos: subgrupos y grupos cociente, acciones de grupos en conjunto y teoremas de Sylow. El teorema de estructura de grupos abelianos finitamente generados. Ejemplos centrales: grupos cíclicos, alternantes, simétricos y dihedrales. Los tres teoremas de isomorfismo de Noether.
2) Álgebra lineal: espacios vectoriales, aplicaciones lineales, determinantes, diagonalización, forma de Jordan.
3) Anillos: ideales (a izquierda y a derecha), anillos cociente, tres teoremas del isomorfismo de Noether. Ejemplos centrales: anillos polinomiales en una o varias variables, matrices, DIPs.
4) Campos: extensiones de campos, extensiones algebraicas, extensiones trascendentes, clausura algebraica, explicación del porqué el álgebra lineal funciona mejor sobre campos algebraícamente cerrados y explicación de cómo pasar a uno de ellos. Ejemplos centrlaes: Q, R, C y el campo de q elementos.
5) Módulos: submódulos, módulos cociente(caso especial: espacio vectorial dual y espacio vectorial cociente). Tres teoremas de isomorfismo de Noether. Teoremas de estructura para módulos sobre DIPs (corolario: forma canónica de Jordan y teorema de estructura para grupos abelianos). Ejemplos centrales: módulos sobre los anillos explicados anteriormente.

Créditos

4

MATE 4113 Combinatoria Algebraica

Aprender el uso de métodos algebraicos (valores propios, acciones de grupos, cuerpos finitos) para resolver problemas fundamentales y aplicables en la combinatoria.
Conteo de caminos y árboles generadores en grafos, la transformada de Radon, caminos aleatorios, conteo bajo acciones de grupos, diagramas y tableaux de Young, y la propiedad de Sperner. Las aplicaciones de estos temas incluyen la topología, la teoría de redes eléctricos y la teoría de representaciones.

Créditos

4

MATE 4120 Lógica Matemática

La siguiente lista contiene más temas de los que se podrán cubrir en un semestre. El programa se adaptará a los intereses y formación previa del grupo de estudiantes.

0. Cálculo de predicados. (Supondremos conocimiento previo de los conceptos y resultados básicos del cálculo de predicados de esta sección, aunque se podría incluir un rápido repaso). Lenguajes de primer orden. Fórmulas, sentencias. Estructuras. Subestructuras de una estructura, inmersion de una estructura en otra, isomorfismo. Verdad en una estructura, validez lógica. Sistemas deductivos. Un sistema axiomático para la lógica de primer orden. El teorema de Completitud, el teorema de compacidad.                           1.Computabilidad e incompletitud. Nociones básicas de computabilidad. Máquinas de Turing. El problema de la parada. Funciones primitivas recursivas, funciones recursivas. Conjuntos recursivamente enumerables, conjuntos recursivos. Aritmética de Peano. Aritmetización del lenguaje, números de Godel. Representabilidad de relaciones y funciones recursivas. El teorema de incompletitud de Godel.

2. Nociones de teoría de modelos. Equivalencia elemental de estructuras. Subestructuras elementales. Teorema de Lowenheim Skolem. Apectos de categoricidad. Ejemplos Tipos. Realización de tipos y omisión de tipos.Modelos saturados. Modelos atómicos. Modelos numerables de teorías completas. Teoría de Fräissé. Ultraproductos y ultrapotencias.

3. Teoría Axiomática de Conjuntos. Axiomas de Zermelo Fraenkel. Propiedades básicas de los conjuntos bien ordenados. Inducción transfinita y definiciones por recursión. Ordinales. Aritmética de ordinales. El axioma de elección y algunos enunciados equivalentes. Cardinales y una introducción a la aritmética de cardinales. Cofinalidad, cardinales regulares, cardinales inaccesibles. Conjuntos cerrados no acotados y conjuntos estacionarios.

Créditos

4

MATE 4130 Teoría de Conjuntos 2

Este curso tiene dos objetivos principales. Uno es introducir la técnica del forcing para producir pruebas de consistencia relativa con los axiomas de la teoría de conjuntos; en particular se demostrará que la Hipótesis del Continuo es independiente de ZFC. El otro objetivo es estudiar algunas aplicaciones de la teoría de conjuntos a otras ramas de la matemática, en especial la topología y el análisis.

Créditos

4

MATE 4137 Temas En Topología Conjuntista

El objetivo de este curso es servir de puente entre un curso básico de Topología General (e.g. MATE3420) y temas recientes de investigación en el área. Algunos de los temas que trataremos son: Representación de Tychonov y compactificación de Stone- Čech. Álgebras booleanas y ultrafiltros. Dualidad de Stone. El álgebra P(ω)/Fin y el espacio βω.  Álgebras libres y los espacios de Cantor 2k. Invariantes cardinales: productos y subespacios.  Agregando estructura: Grupos, semigrupos y espacios diagonalizables.  Unicidad de grupos compactos cero-dimensionales. Todo grupo compacto es diádico. Dualidad de Pontryagin.

En la segunda parte del curso veremos algunos temas más avanzados, según el interés de los participantes. Estos podrían incluir: Metrizabilidad y espacios de Moore. Teorema de extensión de homotopías y espacios de Dowker.  Topología de “subespacios elementales". Teoría de L-espacios y S-espacios.


Créditos

4

MATE 4140 Teoría de Modelos 1

Iniciar el estudio de la Teoría de Modelos de la Lógica de Primer Orden. Completud, Compacidad, Teoremas de Lowenheim-Skolem. Teorías K.Categóricas, Teorías Completas, Teoría Decidibles e Indecidibles. Equivalencia y Sumersión Elemental. Caracterización de Teorías Universales, Universales-Existenciales. Modelos Existencialmente Cerrados, Teorías Modelo Completas, Eliminación de Cuantificadores. Isomorfismos Parciales, Teoremas de Feferman-Vaugth. Teoremas de Interpolación y Definibilidad. Automorfismos, Indiscernibles, Teorema de Ehrenfeucht-Mostowski. Modelos Genéricos de Fraissé. Algebras Booleanas, Filtros, Ultrafiltros. Ultraproductos, Saturación de Ultraproductos. Tipos de Elementos, Realización y Omisión de Tipos, Saturación, Homogeneidad, Universalidad. Modelos Atómicos y Primos, Teorías Omega-Categóricas. Espacios de Tipos, Estabilidad, TeoríasOmega Estables. Después de esto el instructor podrá profundizar más en temas como las siguientes. Leyes 0-1 en Modelos Finitos. Espectro de Modelos Finitos. Relaciones con Complejidad. Teorema de Keisler-Shelah, Caracterización de Clases Elementales. Teorema de Categoricidad de Morely. Teorema de Baldwin-Lachlan.

Créditos

4

MATE 4157 Introducción a las Representaciones de Grupos Finitos

El curso teoría de representaciones de grupos  finitos está dirigido principalmente a estudiantes de matemáticas y física con conocimientos básicos de teoría de grupos y álgebra lineal. La idea es dar una introducción a varios temas de álgebra y teoría de representaciones que se pueden desarrollar de manera elemental y aparecen en muchas áreas de las matemáticas y de la física.

i.) Representaciones: Definiciones. Ejemplos básicos. Subrepresentaciones. Representaciones irreducibles.  Productos tensoriales de dos representaciones. Cuadrado simétrico y alternante. ii.) Teoría de caracteres: El carácter de una representación.  El lema de Schur. Relaciones de ortogonalidad entre caracteres. Descomposición de la representación regular. Número de representaciones irreducibles.  Descomposición canónica de una representación. Descomposición explícita de una representación. iii.) Subgrupos, productos y representaciones inducidas: Subgrupos abelianos.  Producto de dos grupos. Representaciones inducidas. iv.) Ejemplos y generalizaciones: Grupos cíclicos. Grupos diedrales. Grupos simétricos y alternantes. Representaciones de grupos compactos. v.) El álgebra de grupo: Representaciones y módulos Descomposición de C[G].  El centro de C[G].  Propiedades de integralidad de los caracteres.


Créditos

4

MATE 4161 Curvas Elípticas

El objetivo de la clase es exponer las propiedades aritméticas básicas de la curvas elípticas.  La geometría diofantina trata del estudio de las soluciones en los enteros o en los racionales de ecuaciones algebraicas. Las ecuaciones lineales no poseen mayor  dificultad ; las cuadráticas, de mayor interés, fueron estudiadas ampliamente a principios del siglo XX.  El siguiente caso más simple, es el estudio de las cúbicas en dos variables : las curvas elípticas. Son tan complejas que hoy en día sigue siendo un tema de investigación muy dinámico.

 

En la primera parte del curso, definiremos la curvas elípticas y las estudiaremos sobre

un campo de base cualquiera. Se explicará, entre otras cosas, la operación que hace de sus puntos un grupo abeliano.  Luego podremos abarcar temas más avanzados, según el tiempo y el interés de los estudiantes: sobre campos finitos, demostrando el teorema de Hasse-Weil; sobre el campo de los complejos, demostrando el teorema de uniformización; sobre campos de números, demostrando el teorema de Mordell-Weil.

Créditos

4

MATE 4172 Grupos de Permutaciones

Este curso está dirigido a estudiantes de matemáticas y estudiantes de otras ciencias que quieran usar la teoría de grupos en su carrera. Profundizaremos y extenderemos las ideas y construcciones que aparecen en el curso Álgebra Abstracta I para estudiar grupos de permutaciones y sus aplicaciones en la combinatoria y en la teoría de representaciones. Construcciones y estructura del grupo de permutaciones S_n y sus subgrupos, órbitas y estabilizadores, transitividad y k-transitividad, productos semidirectos y productos de corona, grupos primitivos y imprimitivos, permutaciones de conjuntos infinitos, y representaciones y caracteres de S_n.

Créditos

4

MATE 4201 Analisis para Postgrado

1. Análisis Real
Espacios métricos, completitud, completacion de un espacio métrico, compacidad, conexidad.

2. Introducción al Análisis Funcional
Introducción a la medida de Lebesgue, Teorema de la convergencia Monotona,Teorema de la Convergencia Dominada, Lema de Fatou; Espacios Lp. Espacios Ck [a; b], Teorema de Arzela-Ascoli, Teorema de Stone-Weierstrass.

3. Análisis Complejo
Funciones holomorfas, Ecuaciones de Cauchy-Riemann, Teorema de Cauchy y Analiticidad, Calculo de Residuos, Teorema Fundamental del Álgebra.


Créditos

4

MATE 4220 Medida e Integración

El curso da una introducción a la teoría de la medida de Lebesgue y sus aplicaciones al análisis funcional y a la probabilidad.
INTEGRACIÓN ABSTRACTA: El concepto de medibilidad. Propiedades elementales de las medidas. Integración de funciones positivas. Integración de funciones complejas. Conjuntos de medida cero. MEDIDAS DE BOREL POSITIVAS: El Teorema de Representación de Riesz . Regularidad de las medidas de Borel. La medida de Lebesgue. Propiedades de continuidad de las funciones medibles. MEDIDAS COMPLEJAS: Variación total. Continuidad absoluta. El teorema de Radon–Nikodym. INTEGRACIÓN SOBRE ESPACIOS PRODUCTO: Medibilidad de productos cartesianos. El teorema de Fubini. Completación de medidas producto. Convoluciones. Funciones de distribución. DIFERENCIACIÓN: Derivada de medidas. El Teorema Fundamental del Cálculo. Transformaciones diferenciables. ESPACIOS LP: Funciones convexas y desigualdades. Espacios Lp. Aproximación por funciones continuas.

Créditos

3

MATE 4301 Teoría de Ecuaciones Diferenciales Parciales

El curso tiene como propósito la presentación teórica de las ecuaciones básicas da la Física Matemática tales como las ecuaciones de Laplace y Poisson, las ecuaciones de transmisión de calor y de onda, los sistemas de ecuaciones en derivadas parciales de tipo Navier-Stokes y similares. Una de las características del curso es la deducción detallada de todos los resultados con demostraciones. El curso tiene un énfasis teórico y es orientado principalmente a los estudiantes de las carreras Matemática y Física, aunque también puede ser útil para los estudiantes de Ingeniería que están interesados en una avanzada base teórica.

Créditos

4

MATE 4330 Análisis Funcional

Espacios de Banach: Definiciones y ejemplos. Subespacios, transformaciones lineales, espacios cocientes. Dualidad: el teorema de Hahn-Banach. Teoremas de Banach-Steinhaus, de la Aplicación Abierta y del Gráfico Cerrado. Aplicaciones: Operadores adjuntos. Espacios de Hilbert: Definiciones y ejemplos, ortogonalidad. Operadores continuos: convergencia de operadores. Operadores hermitianos, normales y unitarios. Proyecciones ortogonales. Operadores compactos: Introducción a la teoría espectral.

Créditos

3

MATE 4412 Geometría Diferencial y Geometría Riemanniana

La geometría Riemanniana ha sido una de las áreas más importantes de las matematicas desde su inicio, en el siglo XIX, y sus aplicaciones en física teórica (en relatividad general, en particular) revolucionaron nuestra concepción del mundo. El curso que se presenta a continuación tiene como objetivo introducir las ideas fundamentales y las herramientas básicas de la geometría Riemanniana, presentando al mismo tiempo los resultados más importantes en el área y algunas de sus aplicaciones (clásicas y recientes) en el estudio de la topología de variedades diferenciales.

Créditos

4

MATE 4421 Topología Algebraica

Introducir los conceptos básicos de la topología algebraica, así como las herramientas algebraicas clásicas usadas en el cálculo de invariantes topológicos de espacios simpliciales. Contenido: Homotopía, complejos celulares. Grupo Fundamental: Teorema de Van Kampen, espacios recubridores. Homología: celular, simplicial, invarianza homotópica, sucesión de Mayer-Vietoris, axiomas, ejemplos. Cohomología: simplicia, celular, toerema de coeficientes universales, cohomologia de Cech, cohomologia de De Rham, triangulaciones, producto copa, dualidad de Poincaré.

Créditos

4

MATE 4424 Topología Algebraica 2

Profundizar en las aplicaciones de las Teorías de Homología, Cohomología y Clases Características. Evidenciar la relación de estas teorías con la Geometría. Teoría de Transversalidad en Superficies Compactas. Topología de Variedades de Baja Dimensión. Clases Características de Chern y de Pontrjagyn. Breve introducción a la Geometría Compleja y Compleja Generalizada. Obstrucciones para la Existencia de Estructuras Complejas Generalizadas.

Créditos

4

MATE 4425 Geometría de Formas Diferenciales

El curso tiene como objetivo estudiar la teoría de formas diferenciales sobre variedades, así como la geometría asociada a diferentes  tipos de estructuras (definidas por tensores de diferentes tipos) sobre ellas y sus aplicaciones en topología. En la primera parte se estudiará la teoría general de variedades, campos vectoriales y el teorema de Frobenius; la teoría de formas diferenciales, cohomología de De Rham y los teoremas de Stokes y De Rham, así como los fundamentos de la teoría de grupos y álgebras de  Lie. En la segunda parte, se estudiará la interacción entre análisis y topología ilustrada por la teoría de Hodge para  variedades Riemannianas y, finalmente, la definición de curvatura y la construcción de clases características según el teorema de Chern- Weil.


Créditos

4

MATE 4527 Reconocimiento de Patrones

El inmenso potencial de aplicación del área de Reconocimiento de Patrones en medicina, en verificación de firmas, huellas dactilares, en identificación de señales eléctricas, etc., por un lado, y los grandes avances realizados recientemente tanto en la práctica como en la teoría probabilística de los procedimientos del área, tales como máquinas de soporte vectorial, árboles de clasificación, clasificadores de vecinos más cercanos, clasificadores basados en estimación de densidades por núcleos, además del desarrollo reciente de la Teoría de Aprendizaje Estadístico y el impacto que esta teoría ha tenido sobre la práctica de Reconocimiento de Patrones, motivan la inclusión de esta asignatura entre las electivas del área de Estadística del Pregrado y la  Maestría en Matemáticas de Uniandes.
Introducción. El error de Bayes. Importancia de las covariables en el problema de Reconocimiento de Patrones. Clasificador de Bayes. Funciones Discriminantes. El discriminador lineal de Fisher. Propiedades paramétricas y no-paramétricas y limitaciones. Estimación de densidades por núcleos (kernels). Elección del ancho de ventana para ancho de ventana fijo. Selección del ancho de ventana mediante distancias a vecinos cercanos. Uso de la estimación de densidades en el problema de Reconocimiento de Patrones. El clasificador de k vecinos más cercanos. Consistencia y criterios de implementación. El Perceptrón. Criterios de ajuste. Convergencia. Máquinas de soporte vectorial. Propiedades de los núcleos utilizados en estos clasificadores. Cotas teóricas de error. Algoritmos de estimación. Identificación de conglomerados. Métodos divisivos y aglomerativos (dendogramas). Ventajas y desventajas. Criterios para elegir el número correcto de conglomerados.
Clasificadores tipo árbol (CART) y su poda.

Créditos

4

MATE 4530 Cálculo Estocástico

Introducir al estudiante al movimiento Browniano y algunas de sus propiedades. Presentarle la teoría básica de integración estocástica con respecto al movimiento Browniano y su relación con las ecuaciones diferenciales estocásticas de difusión. Darle la posibilidad al estudiante de aplicar estos conceptos en el contexto de las aplicaciones en finanzas.

Créditos

4

MATE 4706 Optimización Convexa 2

El propósito de este curso es estudiar dos aspectos importantes de la optimización convexa:

1. Métodos numéricos (demostrar que el problema de aproximar la solución a un problema de optimización convexa con precisión muy alta es de complejidad POLINOMIAL) y discutir algunas implementaciones eficientes.

2. El rol de la optimización convexa en la aproximación de problemas combinatorios (el algoritmo de Goemans-Williamson y las jerarquías de aproximación de Lasserre y Parrilo para problemas de momentos).

Se discutirán además muchas aplicaciones de la optimización convexa que resultan de estos dos aspectos.

Créditos

4

MATE 4707 Introducción a la Optimización Convexa

El curso tiene dos objetivos principales: Por una parte familiarizar al estudiante con las ideas  básicas de la geometría convexa y las clases principales de conjuntos convexos importantes en optimización: politopos, conos cuadráticos y espectrahedros. Por otra parte el curso quiere enseñar al estudiante a modelar y resolver problemas concretos de optimización   (principalmente provenientes de finanzas, estadística, ingeniería y matemáticas puras) mediante el uso de computadores (específicamente, aprenderán a usar el lenguaje AMPL que permite resolver problemas a gran escala en la nube).


Créditos

4

MATE 4901 Seminario de Postgrado 1

El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión.

Créditos

2

MATE 4902 Seminario de Postgrado 2

El objetivo es poner al estudiante en contacto con una gama amplia de temas matemáticos avanzados y enseñarle a sintetizar y exponer oralmente dichos temas con claridad y precisión. En éste seminario el estudiante decidirá el tema en el área en que piensa desarrollar su trabajo de grado y preparará con el profesor que posiblemente será su director de trabajo de grado una exposición sobre el tema escogido.

Créditos

2

MATE 4903 Seminario de Trabajo de Grado

Su objetivo es introducir plenamente al estudiante en la actividad investigativa, por medio del estudio directo de la literatura matemática especializada y capacitarlo, no solo para la solución de problemas, sino para su adecuada formulación. El estudiante debe presentar el proyecto de tesis al Comité de Postgrado e Investigaciones del Departamento antes de la última semana de retiros del semestre, se espera que el estudiante avance en su investigación en el periodo posterior.

Créditos

3

MATE 4904 Trabajo de Grado

El estudiante deberá elaborar un trabajo de investigación en alguna de las áreas matemáticas que el Programa de Magíster ofrece. Éste debe demostrar que el autor ha realizado un trabajo de asimilación y sistematización, o una exploración cuidadosa en la frontera de un tema concreto, evidenciando cierto grado de creatividad y una gran familiaridad con la información reciente sobre el tema. El Trabajo de Grado debe estar redactado en castellano o inglés y poseer la organización formal propia de un trabajo científico.

Créditos

12

MATE 4990 Inscripción a Grado

Este curso lo deben inscribir los estudiantes de posgrado que planean recibir su grado el semestre siguiente.

Créditos

0

MATE 4998 Intercambio Internacional

Materia que inscriben los estudiantes de posgrado cuando hacen intercambios académicos con Universidades de otros países.

Créditos

0