4000

FISI4008 Renormalizacion Perturbativa

El presente curso tiene como objetivo principal presentar la teoría de renormalización perturbativa (en teoría cuántica de campos relativista) de una forma coherente y matemáticamente rigurosa. Para lograr dicho objetivo, el curso comenzará con un repaso de herramientas básicas que incluye la representación usual del operador de scattering en términos de diagramas de Feynman. Luego de una discusión introductoria sobre teoría de distribuciones, se explicará cuál es la razón –desde el punto de vista matemático- de la aparición de las divergencias. Esto nos llevará al estudio del problema de multiplicación (y extensión) de distribuciones, que es la base del método de Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ). A continuación, se explicará el método de Epstein-Glaser, basado en principios generales de causalidad. Esto permitirá volver sobre varios de los cálculos perturbativos más relevantes históricamente (como el cálculo del momento magnético anómalo del electrón) pero con la diferencia de que en ningún momento se hará uso de cantidades divergentes, ni de métodos heurísticos. Finalmente se presentará una visión general de los desarrollos más recientes de la teoría.

Temas El campo escalar y su cuantización. La serie de Dyson. Orden normal. Teorema de Wick. Diagramas de Feynman. Regularización dimensional. Cálculo de autoenergía en la teoría 𝜑4. Introducción a la teoría de distribuciones. Teoría axiomática de campos. El teorema de Haag. Multiplicación de distribuciones y el origen de las divergencias. El método BPHZ. Comparación entre BPHZ y Dim-Reg. El método de Epstein-Glaser. Elementos de electrodinámica cuántica. QED finita, ejemplos: polarización del vacío, autoenergía, momento magnético. El enfoque algebraico a teoría cuántica de campos. Cuantización por deformación. Un nuevo enfoque: Paqft. Ejemplos y aplicaciones recientes.

Créditos

4

Distribución

-

FISI4010 Mecánica Cuántica Avanzada I

El objetivo del curso es introducir los temas fundamentales de la mecánica cuántica relativista, la cuantización de los campos y la interacción radiación materia. 

Al finalizar el curso los estudiantes deben:

  • Haber afianzado sus conocimientos de mecánica cuántica básica.
  • Conocer y saber los conceptos básicos de la mecánica cuántica relativista
  • Conocer y saber los conceptos básicos relacionados con la cuantización del campo electromagnético y lo referente a segunda cuantización. 
  • Conocer y saber el formalismo básico de la temática de interacción de la materia.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4013 Seminario 1 QFT/Física-Matemática

Este seminario busca unir la investigación y la docencia a fin de que mutuamente se complementen. El seminario esta formado por un grupo de aprendizaje activo, pues los participantes no reciben la información ya elaborada, como convencionalmente se hace, sino que la buscan, la indagan por sus propios medios en un ambiente de recíproca colaboración.

El seminario es una forma de docencia y de investigación al mismo tiempo. Se diferencia claramente de la clase magistral, en la cual la actividad se centra en las dinámicas de docencia - aprendizaje. En el seminario, el alumno sigue siendo discípulo, a la vez que es el principal actor de la construcción de su propio conocimiento. La ejecución de un seminario ejercita a los alumnos en el estudio personal y de equipo y los familiariza con la de investigación y la reflexión guiadas por el método científico.

Objetivos

Vincularse al grupo de grupos de QFT del Departamento de Física participando activamente en el seminario.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4014 Seminario 2 QFT/Física-Matemática

Este seminario busca unir la investigación y la docencia a fin de que mutuamente se complementen. El seminario esta formado por un grupo de aprendizaje activo, pues los participantes no reciben la información ya elaborada, como convencionalmente se hace, sino que la buscan, la indagan por sus propios medios en un ambiente de recíproca colaboración.

El seminario es una forma de docencia y de investigación al mismo tiempo. Se diferencia claramente de la clase magistral,en la cual la actividad se centra en las dinámicas de docencia - aprendizaje. En el seminario, el alumno sigue siendo discípulo, a la vez que es el principal actor de la construcción de su propio conocimiento. La ejecución de un seminario ejercita a los alumnos en el estudio personal y de equipo y los familiariza con la de investigación y la reflexión guiadas por el método científico.

Objetivos

Vincularse al grupo de grupos de QFT del Departamento de Física participando activamente en el seminario.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4042 Tópicos en Mecánica Estadística

La física es una ciencia con la que hemos podido entender los fenómenos naturales desde las escalas más pequeñas de las partículas elementales hasta las escalas más grandes de las galaxias.
La mecánica estadística es el área de la física que permite conectar estas diferentes escalas y entender como el comportamiento a nivel microscópico de un sistema influye en su comportamiento a
nivel macroscópico. A través de un análisis estadístico, la mecánica estadística le da sustento a la termodinámica.

Este curso aborda el estudio de tres tópicos particulares de mecánica estadística: la teoría de fluidos simples en equilibrio termodinámico, las matrices aleatorias y los sistemas de Coulomb. Estos
temas son interdisciplinares ya que las herramientas que se aprenderán en el curso son aplicables a otras áreas de la física tales como la mecánica cuántica, el estudio de sistemas caóticos y la teoría de campos.

Créditos

4

Distribución

-

FISI4051 Laboratorio Avanzado

El laboratorio intermedio y avanzado completa la formación experimental de los estudiantes de pregrado y posgrado en Física a través de experimentos avanzados y de un proyecto que se realiza en los laboratorios de investigación del Departamento. Los estudiantes desarrollan el curso a través de la construcción de marcos teóricos, toma y análisis de datos, cálculo de errores experimentales, poniendo en práctica sus habilidades de comunicación científica escrita y oral.

A lo largo del curso, se espera que el estudiante adquiera o desarrolle las siguientes habilidades:

I. Hacer cálculos de estimación y explicar los casos en los cuales los resultados no son acordes con la teoría.

II. Conocer instrumentos científicos utilizados en experimentos de física avanzada: Conocer las posibles fuentes de error y cómo minimizarlas.

III. Analizar datos y sus errores: incertidumbres, errores sistemáticos, ajustes, gaussianas, error estándar, etc. Uso de programas de análisis de datos como Matlab, Python, R, Root, Origin, Mathematica.

IV. Trabajar independientemente y como parte de un grupo, de manera responsable y ética.

V. Comunicar los resultados obtenidos, usando lenguaje científico apropiado: Preparación conceptual del experimento. Bitácora de laboratorio. Elaboración de propuestas y artículos científicos para presentar los informes y el documento del proyecto final. Comunicación a través de posters.

Créditos

4

Ofrecido

Semestral

Distribución

-

FISI4094 Cosmología Moderna

Los objetivos del curso son:

  • Estudiar los modelos cosmológicos tipo Friedmann-Robertson-Walker.
  • Analizar el problema del universo plano y la solución propuesta por los modelos inflacionarios.
  • Estudiar la evolución del universo temprano desde el punto de vista termodinámico.
  • Profundizar en el estudio de la evolución del universo temprano desde el punto de vista de la física de partículas.
  • Conocer las propiedades básicas de la radiación cósmica de fondo.
  • Entender el problema de la materia oscura.
  • Entender el problema de la energía oscura.
  • Estudiar el problema de la bariogénesis.

 

Créditos

4

Ofrecido

Semesttral

Distribución

-

FISI4098 Trabajo de Grado (1)

Investigación dirigida (o co-dirigida) por un profesor-investigador de planta del Departamento, que representa una contribución al avance de la física (ver Reglamento General de Posgrado).

Créditos

5

Ofrecido

Semesttral

Distribución

-

FISI4099 Trabajo de Grado (2)

Investigación dirigida (o co-dirigida) por un profesor-investigador de planta del Departamento, que representa una contribución al avance de la física (ver Reglamento General de Posgrado).

Créditos

5

Ofrecido

Semestral

Distribución

-

FISI4118 Seminario 1 Detectores de Radiación

Este seminario busca unir la investigación y la docencia a fin de que mutuamente se complementen. El seminario está formado por un grupo de aprendizaje activo, pues los participantes no reciben la información ya elaborada, como convencionalmente se hace, sino que la buscan, la indagan por sus propios medios en un ambiente de recíproca colaboración.

El seminario es una forma de docencia y de investigación al mismo tiempo. Se diferencia claramente de la clase magistral, en la cual la actividad se centra en las dinámicas de docencia - aprendizaje. En el seminario, el alumno sigue siendo discípulo, a la vez que es el principal actor de la construcción de su propio conocimiento. La ejecución de un seminario ejercita a los alumnos en el estudio personal y de equipo y los familiariza con la de investigación y la reflexión guiadas por el método científico.

Objetivos

Vincularse a uno de los grupos de investigación del Departamento de Física, participando activamente en el seminario.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4119 Seminario 2 Detectores de Radiación

Este seminario busca unir la investigación y la docencia a fin de que mutuamente se complementen. El seminario está formado por un grupo de aprendizaje activo, pues los participantes no reciben la información ya elaborada, como convencionalmente se hace, sino que la buscan, la indagan por sus propios medios en un ambiente de recíproca colaboración.

El seminario es una forma de docencia y de investigación al mismo tiempo. Se diferencia claramente de la clase magistral, en la cual la actividad se centra en las dinámicas de docencia - aprendizaje. En el seminario, el alumno sigue siendo discípulo, a la vez que es el principal actor de la construcción de su propio conocimiento. La ejecución de un seminario ejercita a los alumnos en el estudio personal y de equipo y los familiariza con la de investigación y la reflexión guiadas por el método científico.

Objetivos

Vincularse a uno de los grupos de investigación del Departamento de Física, participando activamente en el seminario.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4401 Seminario de Optica Cuantica

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4402 Seminario 2 de Optica Cuantica

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4405 Mecanica Analitica

Los objetivos principales del curso son:

  • Introducir o profundizar en los conceptos avanzados de la mecánica clásica, tanto en la formulación Lagrangiana como en la hamiltoniana.
  •  Analizar algunos sistemas mecánicos clásicos usando herramientas avanzadas de la mecánica analítica: fuerzas centrales, sistemas de osciladores, dinámica del cuerpo rígido.
  • Introducir al estudiante a las herramientas avanzadas del formalismo canónico para el análisis de sistemas hamiltonianos integrables y caóticos.
  • El curso está dividido en tres módulos: Formulación matemática básica de la mecánica analítica, análisis avanzado de algunos sistemas mecánicos, técnicas y conceptos avanzados de la mecánica analítica.

Créditos

4

Ofrecido

Anual-Primer semestre del año

Distribución

-

FISI4430 Electrodinamica

The course will begin with a revision of ideas from electrodynamics involving potentials and fields. This involves the consideration of the scalar and vector potentials in electrodynamics, gauge transformations, conservation laws, etc. After recollecting the above which has been seen to some extent in earlier courses, the course goes over to relativistic electrodynamics. Here we shall start with special relativity and look into the covariant formulation of electrodynamics. In the last part of the course we will study retarded potentials and topics related to the radiation of moving charges and radiation in collisions.

PLANNED TOPICS

Introduction:  From statics to dynamics. Maxwell’s equations in integral and differential form, Static Potentials - Laplace and Poisson’s equations, Green’s function method, Dirichlet and Neumann boundary conditions, Potentials in Electrodynamics, Gauge transformations, Energy in electric and magnetic fields, Poynting’s theorem, conservations laws, electric and magnetic fields in matter.

Relativistic Electrodynamics. Lorentz transformations and relativistic kinematics, Covariant formulation of electrodynamics, antisymmetric field strength tensor, Lagrangian and Hamiltonian for a relativistic charged particle in external electromagnetic fields, motion of charged particles in electric and magnetic fields, Lagrangian description of electromagnetic fields, action function of the electromagnetic field, continuity equation in the 4-dimensional form, stress tensors

 

Fields of moving charges and topics in radiation. Retarded potentials and fields, Liénard Wiechert potentials and fields for a point charge, electric and magnetic dipole radiation, Power radiated by an accelerated charge:  Larmor’s formula, angular distribution of radiation emitted by an accelerated charge, radiation emitted during collisions, Bremsstrahlung in collisions and decay processes

Créditos

4

Ofrecido

Anual-Primer semestre del año

Distribución

-

FISI4450 Optica Moderna

Guiar a los estudiantes en la apropiación de temáticas propias de la óptica Moderna. Introducir temas fundamentales, como son: el tratamiento de la luz como una onda, la óptica geométrica y fenómenos ópticos como dispersión, difracción e interferencia. Adicionalmente se discutirá el concepto de coherencia tanto temporal como espacial.

Temas

Luz y el electromagnetismo: Naturaleza ondulatoria de la luz.

Ley de reflexión y refracción.  Reflexión interna total, Angulo de Brewster, Fibras ópticas

Polarización: Elipse de polarización, figuras de Lissajous, Parámetros de Stokes, Vectores de Jones, Matriz de coherencia de Wolf, Esfera de Poincaré. Polarización por reflexión, Ley de Malus, Birrefringencia, Polarizadores y Laminas de onda.

Dispersión, Absorción.

Óptica geométrica: Formación de imágenes, aproximación paraxial, Formalismo matricial de la óptica geométrica.

Óptica geométrica: Resonadores, Cavidades ópticas, Aberraciones.

Perfil transversal/espacial de un haz de luz: Haces Gaussianos.

Haces de Laguerre-Gauss, Haces de Hermite-Gauss

Perfil temporal de un haz de luz

Difracción: Difracción de Fraunhofer. Patrón de difracción para una apertura rectangular.

Patrón de difracción para apertura circula

Difracción de Fresnel.

Aplicación de la transformada de Fourier a la difracción

Interferencia: Interferencia temporal, interferómetro de Michelson, Interferómetro de Sagnac,  Interferómetro de Fabry-Perot, Interferómetro Mach-Zender

Interferencia espacial: Interferómetro de Young

Coherencia:Coherencia temporal:  Grado de coherencia temporal , Tiempo de coherencia, Ancho de línea, Teorema de Wiener-Khinchin.

Coherencia espacial: Grado de coherencia espacial, Area de coherencia, Teorema Citter-Zernike

Aplicaciones de coherencia: CohereEspectroscopía de transformada de Fourier. Coherencia espacial y su usa para obtener imágenes

Créditos

4

Ofrecido

202210

Distribución

-

FISI4472 Óptica Cuántica Teórico Práctica

Hoy en día, la luz, y principalmente la luz láser, ha permitido estudiar conceptos fundamentales de la física y desarrollar nuevas tecnologías en campos tan diversos como la información, las ciencias de la salud y las energías alternativas entre otros. Dentro de una temática tan general como puede ser la luz, la óptica cuántica ha sido de gran interés por su rol fundamental para el entendimiento de la mecánica cuántica y sus aplicaciones como computación cuántica, metrología, criptografía cuántica y nuevas formas de espectroscopía entre otros. En este curso se tratarán temáticas referentes a fenómenos ópticos en los cuales la naturaleza mecánico cuántica de la luz es aparente, cubriendo desde la cuantización del campo electromagnético hasta la interacción luz-materia.

Créditos

4

Ofrecido

202410

Distribución

-

FISI4701 Seminario 1 Materia Condensada

El Seminario 1 le permite al estudiante conocer de cerca una de las áreas de la Física, en las cuales se hace investigación en el Departamento de Física y que ofrece un seminario semanal con conferencias de los miembros del grupo y de invitados de otras instituciones expertos en el tema. El estudiante participa asistiendo a las conferencias y presentando al final del seminario una conferencia sobre un tema sugerido por el director del seminario o por un profesor del grupo.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4702 Seminario 2 Materia Condensada

En el Seminario 2 el estudiante, además de asistir al seminario del grupo, debe preparar un proyecto de grado bajo la dirección de un profesor para presentarlo a evaluación externa (dos evaluadores) un mes antes de terminar el semestre. La nota de este curso solamente puede ser asignada una vez recibidos los conceptos de los evaluadores y el estudiante debe matricular el Trabajo de Grado 1 en el semestre inmediatamente siguiente.

Créditos

3

Distribución

-

FISI4703 Seminario 1 de Fisica Estadistica

La física es una ciencia con la que hemos podido entender los fenómenos naturales desde las escalas más pequeñas de las partículas elementales hasta las escalas más grandes de las galaxias.
La mecánica estadística es el ´área de la física que permite conectar estas diferentes escalas y entender como el comportamiento a nivel microscópico de un sistema influye en su comportamiento
a nivel macroscópico. A través de un análisis estadístico, la física estadística le da sustento a la termodinámica.

El seminario de física estadística es una actividad organizada por el grupo de física estadística que tiene por principal objetivo proporcionar un espacio de trabajo para los miembros del grupo
para compartir los avances en sus investigaciones e intercambiar ideas.

 

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4704 Seminario 2 de Fisica Estadistica

La física es una ciencia con la que hemos podido entender los fenómenos naturales desde las escalas más pequeñas de las partículas elementales hasta las escalas más grandes de las galaxias.
La mecánica estadística es el ´área de la física que permite conectar estas diferentes escalas y entender como el comportamiento a nivel microscópico de un sistema influye en su comportamiento
a nivel macroscópico. A través de un análisis estadístico, la física estadística le da sustento a la termodinámica.

El seminario de física estadística es una actividad organizada por el grupo de física estadística que tiene por principal objetivo proporcionar un espacio de trabajo para los miembros del grupo
para compartir los avances en sus investigaciones e intercambiar ideas.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4709 Seminario 1 de Nanociencia y Fenómenos Cuánticos

El seminario de física es un espacio académico diseñado para fomentar el desarrollo de habilidades críticas, analíticas y de comunicación en los estudiantes, a través de la exposición y discusión de temas actuales y relevantes en el campo de la física. Este curso proporciona una plataforma para que los estudiantes se familiaricen con las metodologías de investigación y presentación científica, preparándolos para desafíos académicos y profesionales futuros.
 

Créditos

3

Distribución

-

FISI4710 Seminario 2 de Nanociencia y Fenómenos Cuánticos

El seminario de física es un espacio académico diseñado para fomentar el desarrollo de habilidades críticas, analíticas y de comunicación en los estudiantes, a través de la exposición y discusión de temas actuales y relevantes en el campo de la física. Este curso proporciona una plataforma para que los estudiantes se familiaricen con las metodologías de investigación y presentación científica, preparándolos para desafíos académicos y profesionales futuros.
 

Créditos

3

Distribución

-

FISI4720 Topics in Core Level Spectroscopy: Theory and Simulations

X-ray excitations of core electrons in solids, combined with a sensitive measurement of its effects, can give information about the local crystal and electronic structure, nature of bonding between ions (i.e., angle or length bonding), etc. This can be carried out using synchrotron radiation sources that allow the performance of different techniques which are known as core-level spectroscopies. Some examples are XAS (X-ray absorption spectroscopy), RIXS and REXS (Resonant inelastic and elastic X-ray scattering), nIXS (non-resonant inelastic X-ray scattering), XPS (X-ray photoelectron spectroscopy), etc. The physical interpretation of the obtained experimental data from such spectroscopies usually demands an elaborated theoretical framework and related computational tools. This guide course gives the student fundamental concepts about the current theoretical approaches used to interpret experimental data obtained from the core-level spectroscopies. The objective is that the student can calculate different core level spectroscopy types on solids using the free software Quanty, a quantum many body script language designed for such a purpose. Other software as CTM_4DOC and Crispy, which are graphic user interfaces for Quanty, will be used as well. Finalizing this course it is expected that the student can calculate different X-ray spectroscopy for BiFeO_3 and rare earth nickelates RNiO_3 (R = Sm, Nd, and La), which are the materials synthesized at the nanomagnetism laboratory and have been studied experimentally by the group under different core-level spectroscopies at synchrotrons.

Créditos

4

Distribución

-

FISI4730 Introducción a la Óptica en Materiales Magnéticos y Nanoestructuras

Ofrecer a los estudiantes los conceptos y herramientas matemáticas que permiten al estudiante la comprensión y modelamiento de la interacción radiación-materia con especial énfasis en los materiales hetero-estructurados (conductores nobles y ferromagnéticos) de dimensiones nanométricas.  Se mostrará como en estos sistemas se presentan una serie de fenómenos relacionados con resonancia plasmónica y las propiedades magneto-ópticas de los materiales.

Objetivos:

  • Revisar los fundamentos básicos de la teoría electromagnética y la interacción con materiales isotrópicos, homogéneos y lineales.
  • Estudiar el problema de la interacción radiación-materia para el caso de materiales isotrópicos hetero-estructurados.
  • Explorar los formalismos más utilizados por la comunidad científicas para el modelamiento de la propagación de ondas electromagnéticas en la materia.
  • Estudiar los experimentos fundamentales para el estudio de las propiedades ópticas de estos materiales.
  • Comprender los alcances de estas herramientas en aplicaciones.

Créditos

4

Ofrecido

202220

Distribución

-

FISI4801 Seminario 1 de Biofisica

El Seminario 1 le permite al estudiante conocer de cerca una de las áreas de la Física, en las cuales se hace investigación en el Departamento de Física y que ofrece un seminario semanal con conferencias de los miembros del grupo y de invitados de otras instituciones expertos en el tema. El estudiante participa asistiendo a las conferencias y presentando al final del seminario una conferencia sobre un tema sugerido por el director del seminario o por un profesor del grupo.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4802 Seminario 2 de Biofisica

En el Seminario 2 el estudiante, además de asistir al seminario del grupo, debe preparar un proyecto de grado bajo la dirección de un profesor para presentarlo a evaluación externa (dos evaluadores) un mes antes de terminar el semestre. La nota de este curso solamente puede ser asignada una vez recibidos los conceptos de los evaluadores y el estudiante debe matricular el Trabajo de Grado 1 en el semestre inmediatamente siguiente.

Créditos

3

Distribución

-

FISI4810 Biología de Sistemas

Este curso presenta una introducción a la Biología de Sistemas, desde los conceptos básicos hasta el estado del arte. El curso se enfocará en desarrollar un entendimiento cuantitativo de los circuitos genéticos y bioquímicos, desde genes individuales, pasando por sistemas celulares, a organización social. Se hará énfasis en los modelos analíticos generales y en la construcción de circuitos (Biología Sintética). Se utilizaran simulaciones para ilustrar los conceptos, pero no se cubrirán temas de bioinformática.  

 

Créditos

3

Distribución

-

FISI4901 Seminario 1 Astronomia y Astrofisica

El Seminario 1 le permite al estudiante conocer de cerca una de las áreas de la Física, en las cuales se hace investigación en el Departamento de Física y que ofrece un seminario semanal con conferencias de los miembros del grupo y de invitados de otras instituciones expertos en el tema. El estudiante participa asistiendo a las conferencias y presentando al final del seminario una conferencia sobre un tema sugerido por el director del seminario o por un profesor del grupo.

Créditos

3

Ofrecido

Semestral

Distribución

-

FISI4902 Seminario 2 Astronomia y Astrofisica

En el Seminario 2 el estudiante, además de asistir al seminario del grupo, debe preparar un proyecto de grado bajo la dirección de un profesor para presentarlo a evaluación externa (dos evaluadores) un mes antes de terminar el semestre. La nota de este curso solamente puede ser asignada una vez recibidos los conceptos de los evaluadores y el estudiante debe matricular el Trabajo de Grado 1 en el semestre inmediatamente siguiente.

Créditos

3

Distribución

-

FISI4906 Cumulos Abiertos: Una Vision Observacional

Este curso está dirigido a estudiantes de pre y postgrado de Física e ingenierías interesados en aprender a trabajar con datos tomados en telescopios modernos. En el transcurso del curso, se adquieren las herramientas básicas para procesar datos astronómicos con la finalidad de hacer estudios fotométricos en poblaciones estelares resueltas.

Los objetivos del curso son I. Comprender el manejo del software astronómico IRAF como herramienta de trabajo. II. Realizar el procesamiento de imágenes tomadas con telescopios modernos, III. Obtener la fotometría de apertura de fuentes puntuales. IV. Realizar búsquedas de variabilidad fotométrica y V.  Realizar los diagramas magnitud-color de poblaciones estelares resueltas.

Temas: Conceptos fotométricos y magnitudes, Fotometría, Instrumentos y observaciones, Cúmulos estelares, CCDs. Caracterización, Reducción de imágenes, Fotometría de apertura, Diagramas magnitud-color de poblaciones estelares, Transformación de coordenadas, Series de tiempo, Fechas Julianas, Sistemas binarios, Estrellas variables, Pulsación estelar.

Créditos

4

Ofrecido

202220

Distribución

-

FISI4961 Curso Tutorial I

Créditos

4

Distribución

-