4000
Seminario de los programas de maestría del Departamento de Ingeniería Eléctrica y Electrónica. Este seminario es obligatorio para todos los estudiantes y es coordinado por los diferentes grupos de investigación. En este seminario el estudiante conoce los proyectos en curso de investigación de los grupos y comienza a desarrollar en forma gradual su propuesta bajo la orientación de un profesor.
Créditos
0
Seminario de los programas de maestría del Departamento de Ingeniería Eléctrica y Electrónica. Este seminario es obligatorio para todos los estudiantes y es coordinado por los diferentes grupos de investigación. En este seminario el estudiante conoce los proyectos en curso de investigación de los grupos y comienza a desarrollar su trabajo de investigación para dar a conocer sus avances y recibir comentarios, orientaciones y sugerencias del grupo.
Créditos
0
Seminario de los programas de maestría del Departamento de Ingeniería Eléctrica y Electrónica. Este seminario es obligatorio para todos los estudiantes y es coordinado por los diferentes grupos de investigación. En este seminario el estudiante conoce los proyectos en curso de investigación de los grupos y comienza a desarrollar su trabajo de investigación para dar a conocer sus avances y recibir comentarios, orientaciones y sugerencias del grupo.
Créditos
0
Es un curso especial o regular que el estudiante adelanta bajo la orientación de un profesor tutor en grupos pequeños o individuales y puede usarse para complementar el área de profundización o apoyar el proyecto de investigación.
Créditos
4
Estudio supervisado por un profesor asesor, sobre problemas o temas seleccionados del área de interés e investigación del estudiante, y orientado a complementar su área de profundización o a complementar su formación para el proyecto de investigación. El estudiante presenta al inicio del periodo académico una propuesta con los objetivos y alcance del proyecto, la metodología, los resultados esPeñados y la forma que defina el asesor para el seguimiento que se dará al desarrollo del mismo.
Créditos
4
El objetivo del curso es introducir los métodos de base para el análisis de los sistemas lineales dinámicos con varias entradas y varias salidas mediante la revisión de álgebra lineal, descripciones matemáticas de un sistema, solución de ecuaciones dinámicas lineales, estabilidad, controlabilidad, observabilidad y formas canónicas de un sistema de múltiples variables, matriz de transferencia, representación por oPeñador diferencial y control multivariable.
Créditos
4
El objetivo del principal del curso brindar herramientas al estudiante para que este identifique las características principales de procesos estocásticos típicos y pueda analizar y diseñar sistemas dinámicos con variables inciertas. El curso presenta inicialmente un repaso de la teoría de probabilidad que incluye definiciones, axiomas, conceptos de variables aLeañorias y de las funciones de distribución y densidad de probabilidad, funciones de variables aLeañorias, momentos y estadísticas condicionales y conceptos básicos de secuencias de variables aLeañorias y estadística. El curso se enfoca en los conceptos generales de procesos estocásticos y del espectro de potencia, el estudio de los procesos básicos tales como el movimiento Browniano, procesos de Poisson, ruido blanco y procesos de Markov. Conceptos de ergodicidad y estacionalidad. Solución de ecuaciones diferenciales estocásticas e integración estocástica y respuesta de sistemas lineales con entradas estocásticos. Representación espectral de procesos estocásticos. Principio de ortogonalidad, filtros, estimación y predicción.
Créditos
4
Este curso es una introducción a las técnicas de optimización que usualmente se requiere emplear al solucionar problemas en diversas áreas de ingeniería. Se cubren problemas de optimización sin restricciones y los principales métodos de solución para este tipo de problemas. Se estudia programación lineal, incluyendo el método simplex y aplicaciones a problemas de transporte y flujo. Finalmente se introducirán conceptos básicos de programación no lineal con restricciones.
Créditos
4
El objetivo de este curso es presentar e introducir a los participantes en los conceptos y métodos de evaluación de confiabilidad de sistemas en general, con aplicaciones específicas en las áreas de interés de los participantes, tales como sistemas de potencia, sistemas industriales, sistemas de telecomunicaciones y sistemas electrónicos.
El curso incluye: repaso de los conceptos probabilísticos de confiabilidad, conceptos de adecuación, seguridad, integración, mantenibilidad; análisis de estructuras y redes, análisis de datos de fallas, modelos de distribución de vida; criterios y metodologías determinísticas y probabilísticas de análisis de confiabilidad, seguridad y riesgo de falla y diseños de ingeniería basados en confiabilidad. Las técnicas de análisis incluyen métodos analíticos, árboles de fallas, análisis de FMCA y simulaciones de Monte Carlo. Se introducen también los conceptos fundamentales de mantenimiento basados en confiabilidad y algunos temas avanzados.
Créditos
4
Este curso comprende modelos, métodos y algoritmos sobre máquinas (computadores) que aprenden a partir de su experiencia. Se estudiarán modelos matemáticos de aprendizaje, a partir de los cuales se identificarán y analizarán los elementos fundamentales de este tipo de sistemas desde los puntos de vista estadístico y computacional. A partir del estudio de la teoría se introducirán métodos del estado del arte que hoy en día se utilizan con gran éxito en aplicaciones a problemas reales en clasificación, regresión y aproximación de funciones.
Créditos
4
Créditos
4
Primer semestre de proyecto de grado.
Créditos
4
Segundo semestre de proyecto de grado.
Créditos
8
Créditos
0
Créditos
0
El curso presenta los aspectos básicos para el planeamiento de expansión de sistemas de transmisión y/o de generación; entre estos la formulación matemática para el tratamiento del problema técnico, el uso de las herramientas fundamentales para el análisis y evaluación del comportamiento del sistema de potencia ante alternativas de expansión (análisis probabilístico, análisis de contingencias, evaluación de confiabilidad), modelos de proyección de demanda y modelación de la incertidumbre de la misma.
Créditos
4
Estabilidad: definición del problema. Métodos de simulación. Ecuación de oscilación. Torque mecánico y eléctrico. Curva ángulo-potencia de una máquina sincrónica. Frecuencias naturales de las máquinas sistema uni-máquinas. Criterio de áreas iguales. Modelos multi-máquinas. Máquinas no reguladas y reguladas. Modos de oscilación. Teoría de transformaciones de Park y variables de estado. Simulación de máquinas sincrónicas, modelos lineales. Sistemas de excitación y control. Efectos de la excitación de la estabilidad. Sistemas multimáquinas, métodos de análisis, problemas de compensación y resonancia. Problemas especiales de estabilidad transitoria. Estabilidad dinámica.
Créditos
4
El objetivo de este curso es introducir al estudiante en el campo de los fenómenos transitorios de carácter electromagnético de alta velocidad que se presentan en los sistemas de potencia debido a fenómenos atmosféricos. El estudiante podrá así aplicar métodos matemáticos para su análisis y determinación de las protecciones contra sobretensiones con estas características.
Créditos
4
Instructor
Torres Macias Alvaro
El objetivo de este curso presentar, analizar y proponer los conceptos y métodos necesarios para configurar una política energética de largo plazo para el país, tomando en consideración aspectos económicos, sociales, ambientales y políticos.
El curso posee tres temas de aprendizaje básicos:
-
La problemática energética en sus dimensiones económica, social y ambiental
-
La elaboración de una política energética en un contexto de mercado
- La reforma de las industrias eléctricas y de gas natural
Se hará énfasis en los conceptos económicos y en las metodologías y herramientas de modelaje para la comprensión de la problemática energética
Créditos
4
De acuerdo con estudios realizados en Estados Unidos se estima que en la actualidad el 85% de la carga instalada en su sistema eléctrico está basada en la electrónica de potencia. Por otro lado se considera que el 50% de la electricidad se suministra a través de sistemas de electrónica de potencia. Y esta tendencia se proyecta de manera similar en otros países en donde las tarifas de energía son mayores a las de Estados Unidos.
Es importante considerar que muchos de los dispositivos de electrónica de potencia que han convertido muchos de los procesos industriales en procesos altamente eficientes, han degradado los sistemas de distribución eléctrica por problemas de Calidad de la Potencia, siendo estos cada vez más frecuentes y su repercusión elevada en los indicadores de productividad, desempeño y seguridad del personal y equipos la industria en general. Esta serie de problemas se traducen en pérdidas económicas debido a: largos períodos de NO facturación, manejo errático de inventarios y/o grandes bases de datos, daño de equipos y componentes, incendios y riesgo con el personal de la empresa, además altos costos administrativos. La calidad de la potencia juega un papel muy importante en el correcto funcionamiento y la confiabilidad delsistema eléctrico.
Considerando la necesidad de formar ingenieros con capacidad de afrontar los retos de evolución tecnológica de la infraestructura eléctrica en las diferentes industrias (petróleo y gas, comunicaciones, financiero, papel, plástico, alimentos, imprenta, entre otros), este curso presentará de manera amplia los fenómenos de calidad de la potencia con base en la bibliografía existente en el ámbito internacional, la normatividad vigente, prácticas recomendadas y experiencias prácticas reales tanto reportadas en la literatura como de la experiencia profesional del profesor como consultor de esta temática en la industria nacional y regional. Adicionalmente se emplearán herramientas.
Créditos
4
Créditos
3
El curso busca entender los conceptos asociados con las microredes inteligentes de energía. En él, los temas de potencia, control, comunicaciones y regulación son desglosados. El curso cuenta con varios profesores y estudiantes doctorales que han venido trabajando en proyectos encaminados a integrar microredes en Colombia.
Créditos
4
Créditos
4
Créditos
3
Este curso pretende dar al estudiante los conceptos, bases y herramientas para entender los fundamentos y retos en nanotecnología. El curso se inicia estudiando las definiciones, principales actores, inversores, iniciativas, compañías activas en el desarrollo, generación de recursos, ideas, comunicaciones y proyectos.
Luego se estudian las propiedades emergentes a nano escalas y las diferencias presentes a macro escalas (ejemplos son incluidos de transiciones de estructuras de 3D a 0D), en términos de propiedades eléctricas, magnéticas, ópticas, térmicas y mecánicas. Se estudian al igual materiales nanos estructurados, los cuales generan al igual que las nano estructuras novedosas propiedades como actuación electro-mecánica/termo-mecánica/opto-mecánica. El curso analizará la forma de fabricar nano estructuras por procesos bidireccionales top-down y bottom-up. Técnicas de caracterización y metrología morfológica, eléctrica y mecánica (Basadas en microscopia de barrido) serán introducidas de forma teórico-experimental. La familiarización con técnicas de barrido pretende ser el marco para un desarrollo critico que permita al estudiante responder: ¿Qué tan cerca estamos de la estandarización y normatividad de productos, nano estructuras y nano materiales a nivel mundial?. Artículos sobre propuestas de estandarización de terminología y técnicas de microscopia de barrido para su uso en nanotecnología son estudiados. Al final, el curso se contextualizara mostrando el estado del desarrollo, inversión y proyectos a nivel Colombiano e incluirá un modulo de transferencia de nanotecnología en cosméticos y medicina desde regulación y normatividad.
Créditos
4
El curso se desarrollará por medio de explicaciones teóricas. Las explicaciones incluirán los conceptos en un nivel funcional, así como el tratamiento matemático necesario, tal que permitan entender y apropiar el concepto objetivo. Durante el curso se dará especial énfasis en el análisis de los circuitos a nivel funcional y se mantendrá una línea de trabajo en la que el diseño y síntesis de circuitos serán privilegiados.
El estudiante es responsable de leer, complementar las explicaciones del curso y desarrollar los ejercicios propuestos en sus espacios de trabajo individual.
Se desarrollarán ejercicios tendientes a la resolución de dudas y al refuerzo de los conceptos del curso. La asistencia a esta sección es obligatoria y en ella se realizarán las evaluaciones regulares del curso.
Créditos
4
Un “Sistema embebido” es aquel que hace referencia a los equipos electrónicos que incluyen un procesamiento de datos, pero que, a diferencia de un computador personal, están diseñados para satisfacer una función específica, como en el caso de un reloj, un reproductor de MP3, un teléfono celular, un router, el sistema de control de un automóvil (ECU), de un satélite o de una planta nuclear.
Los Sistemas Electrónicos Embebidos están constituidos tanto de elementos hardware como de software, diseñados para abordar un problema específico de manera eficiente; cumpliendo requisitos en cuanto a tamaño, consumo, confiabilidad y costo.
El curso busca dar las bases metodológicas y tecnológicas para el diseño de sistemas basado en plataformas.
Créditos
4
Introducir al estudiante a las teorías avanzadas de control moderno con respecto a la optimización dinámica del funcionamiento de los sistemas. Repasos de cálculo de variaciones (Ecuación de Euler-Lagrange), presentación del principio de Pontryaguin, programación dinámica. Aplicación a diferentes problemas de control óptimo. Se hará especial énfasis en los métodos de diseño basado en el criterio cuadrático y en su conexión con los métodos clásicos y sus aspectos de implementación. Los estudiantes desarrollaran un proyecto alrededor de temas aplicativos o de temas tales como sistemas de control estocástico, filtro de KALMAN, control robusto, teoría de juego o uso de algoritmos genéticos.
Créditos
4
En la actualidad, existe un marcado interés por el estudio de sistemas dinámicos no lineales. Para ello, varias técnicas se han venido desarrollando desde el siglo XIX, cuyo uso cada día se hace más tangible cuando se habla de sistemas complejos de gran escala. En este curso, se proveerán herramientas básicas para que el estudiante entienda el comportamiento de sistemas dinámicos no lineales. El curso arranca con una descripción de sistemas uni- y bi-dimensionales que sirven para darse una idea de cómo funcionan este tipo de sistemas. Para ello, se recurre a técnicas tales como linealización (phase plane). Sin embargo, al ser comportamientos complejos, se estudia el tipo de equilibrio que se tiene por medio de técnicas basadas en ciclos límite, mapas de Poincaré, bifurcaciones. Cabe aclarar que el núcleo del curso radica en el análisis de estabilidad de Lyapunov y variantes del mismo (e.,g, principio de invarianza de LaSalle). Finalmente, se introducen conceptos como pasividad y algunos métodos utilizados en sistemas de control nolineal (e.g., feedback linearization).
Créditos
4
Créditos
3
Distribución
-
Créditos
4
Al final de este curso el estudiante deberá ser capaz de diseñar una red celular de tecnología HSDPA. Dado que todas las tecnologías inalámbricas utilizan, en gran medida, los mismos conceptos funciones y herramientas, enseñadas en el curso a través de la tecnología HSDPA, las habilidades obtenidas podrán ser aplicadas a otras tecnologías inalámbricas. Para lograr el objetivo, el estudiante deberá también haber logrado una comprensión de varios conceptos fundamentales: El canal de radio, transmisión digital (modulación, codificación, tec.), la arquitectura HSDPA, los modelos de tráfico de aplicaciones internet y otros y además ser capaz de evaluar el desempeño de esta tecnología por medio de simulaciones.
Créditos
4
Créditos
4
Créditos
4
Instructor
Balbastre Tejedor Juan
Créditos
4
Créditos
4
Distribución
-
Créditos
4
Créditos
4
Créditos
4
Créditos
4
Distribución
-